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Correlation functions in classical gases at high frequency
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A general procedure is outlined to determine the exact asymptotic form of spectra in classical gases at high
frequency. Examples are the force-force correlation or the velocity autocorrelation function of a tagged
particle. For purely repulsive potentials of the form Ar2n, the asymptotic spectra are proportional to
vsexp@2(vt)n#. Exponentn and time constantt depend only on the interparticle potential, while exponents
depends in addition on the correlation studied. The analysis makes use of the fact that the high-frequency
spectra are dominated by high-energy binary collisions. It is argued that for arbitrary potentials the spectra
decay slower than exp(2const3v2/3) and that the results are also relevant for dense fluids. The frequency
range is estimated where quantum effects become important.
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I. INTRODUCTION

Theoretical studies of high-frequency spectra in class
fluids seem to be rare. This is somewhat surprising, si
such spectra play an important role for the dynamics
chemical reactions. For example, the process of vibratio
energy relaxation of excited molecules in solution is of ce
tral importance for the understanding of reaction dynamic
the gas and liquid phase. The elementary step in this pro
involves the transfer of a quantum of vibrational energy in
translational degrees of freedom of the solvent. The theo
ical description usually is based on first order perturbat
theory. This predicts for the relaxation rate of a harmo
oscillator with frequencyv0 in a thermal environment the
Landau-Teller formula@1–4#

k5
1

2m kBT
SF~v0!, ~1!

where

SF~v!5E
2`

1`

dt eiv t^F~ t !F~0!& ~2!

is the spectrum of the fluctuating solvent forceF(t) exerted
on the vibrational coordinate of the solute andm is the mass
of the oscillator. In principle, the right-hand side should
evaluated at the quantum level, but usually just the class
correlation function is inserted.

In real systems, oscillator frequencies range up tov0
;1015 sec21 which corresponds to the H-H oscillation. A
such frequencies all collective motion of the solvent is f
zen. The only processes which contribute to the spectr
this frequency range are rare high-energy binary collisi
~IBC model @5–7#!. This is a vast simplification. In the fre
quency range of interest the many-body dynamics reduce
the two-body problem of binary collisions in a static pote
tial. In the gas phase the potential is simply the binary
tential between the molecules. In a fluid phase one must
the potential which arises from the~frozen! environment. In
the high-frequency, high-energy range this is a small per
1063-651X/2002/65~3!/031204~18!/$20.00 65 0312
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bation. Therefore the spectra in the fluid and in the gas ph
are expected to be proportional@4,6#. I comment on this
point later.

We conclude that the spectra in the high-frequency
main are known once the two-body problem is controlle
Apparently the first authors to use this approach were ag
Landau and Teller@1#. For the special case of an exponent
potential and considering central collisions only, they fou
in the asymptotic domain

SF~v!;e2(vt)2/3
, ~3!

where the time constantt depends on the potential, the tem
perature, and the mass of the molecules.

Landau and Teller’s result, Eq.~3!, does not seem to hav
received the attention it deserves. The reason, presumab
that Eq.~3! is not a true asymptotic relation and cannot
used to calculate rate constants. These authors were
interested in qualitative features of the asymptotic spectr
They neglected all noncentral collisions, and did not bot
about the solvent density which determines the collision f
quency. Such effects generate additional frequen
dependent factors which, however, vary less rapidly than
exponential. It is the purpose of this paper to supply th
additional factors, at least for some potentials in the g
phase. This will transform Landau and Teller’s result into
true asymptotic relation which can be used to quantitativ
predict rate constants in the high-frequency domain.

In particular we will pose and partially answer the follow
ing questions.

~1! Is it possible to sharpen Eq.~3! into a true asymptotic
relation and what is the form of the preexponential factor

~2! How can one calculate the time constantt for arbi-
trary potentials?

~3! Do all spectra decay weaker than exponentially?
~4! Does the exponent 2/3 have any significance bey

the exponential potential considered by Landau and Telle
As argued above, the answer to these questions is not

an amusing exercise in statistical mechanics and com
variables, but of considerable importance to chemical
namics. An additional motivation for analytical studie
©2002 The American Physical Society04-1
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MAX TEUBNER PHYSICAL REVIEW E 65 031204
comes from certain difficulties in the numerical simulation
the high-frequency spectra which apparently have not b
sufficiently appreciated.

The classical spectrumSF(v) can, in principle, be calcu
lated from an equilibrium molecular dynamics~MD! simula-
tion. However, there are several obstacles to reliably de
mine the spectra in the high-frequency domain. First, si
the numerical accuracy is usually limited to 16 orders
magnitude, the high-frequency spectral range often is
accessible. Second, the high-frequency domain display
considerable and unexpected dependence on the numbeN of
particles used in the simulation@8#. One can show that fo
any N there is a frequencyvN so that the MD spectrum is
qualitatively in error forv>vN even for infinite simulation
time. The most serious limitation of a MD simulation of th
spectra, however, stems from the finite simulation tim
High-frequency spectra are generated by almost central
lisions of high energy. The highest energyEmax in the course
of a simulation sets an upper limitvmax beyond which the
MD spectra are qualitatively in error. SinceEmax increases
only logarithmically with simulation time, the simulatio
time becomes prohibitively large for the spectral regions
interest. These matters are more fully discussed in Ref.@8#.

In this paper I present a method to calculate the asy
totics of high-frequency spectra. The procedure is quite g
eral and applicable to all potentials which can be analytica
continued into a part of the complexr plane. From a practi-
cal standpoint the Lennard-Jones potential

VLJ~r !5const3F S s

r D 12

2S s

r D 6G ~4!

is of much greater interest than the exponential poten
studied by Landau and Teller. The spectra of this poten
will be published elsewhere@8#. As a relatively simple ex-
ample and a prerequisite to the Lennard-Jones potent
present in this paper a detailed calculation of spectra of g
interacting with the repulsive potential

V~r !5
A

r n
, n>2. ~5!

The valuen52, while artificial, is interesting, since in thi
case some spectra can be calculated analytically for all
quencies. Forn.2 we find simple analytical results only i
the high-frequency region. In this way we obtain the tr
asymptotic expression for spectra for potentials of this ty
This will answer the first three questions above for the
potentials.

The paper is organized as follows. In Sec. II I presen
simple expression for correlation functions in dilute gas
composed of spherical molecules. This expression is
classical limit of a well known quantum mechanical formu
and reduces the calculation of correlation functions to
two-body problem. Section III discusses a few simple a
well known applications. Section IV contains results for t
special casen52 where many spectra can be calculated a
lytically by elementary methods. A discussion of the gene
procedure to calculate asymptotic spectra follows in Sec
03120
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V.

Section VI contains the asymptotic form of high-frequen
spectra of the potentialV(r ) for generaln including the spec-
trum of the velocity autocorrelation function of a tagged p
ticle. In this section I also determine precisely in which sen
the collisions seen in the high-frequency spectra are ‘‘alm
central.’’ I continue in Sec. VII with a qualitative discussio
of high-frequency spectra in fluids. After a brief remark o
general potentials in Sec. VIII, I turn to question 4 in Se
IX. After presenting a conjecture for the upper bound
exponentn, the paper closes in Sec. X with an estima
of the frequency range where quantum effects beco
important.

II. AVERAGES AND CORRELATIONS IN DILUTE GASES

Consider a tagged particle in a dilute gas of densityr. We
are interested in observables like the force and potential
ergy with the neighbors. The latter is given by

Vi~ t !5(
j Þ i

V„r i j ~ t !…, ~6!

where r i j 5r i2r j . We search to express quantities lik
^Vi(t1t)Vi(t)& by the dynamics of the two-body collisions

Vi(t) is an example of a simple but important class
observables. A relative binary observableAi
5Ai(t1 ,t2 , . . . ) associated with a tagged particlei is a sum
of local observables

Ai5(
j Þ i

Aloc , ~7!

where eachAloc5Aloc(t1 ,t2 , . . . )5Aloc„r (t1),r (t2), . . . …
depends only on the relative distancer5r i j of a pair of par-
ticles at timest1 ,t2 , . . . . By considering limits this includes
a possible dependence on relative velocities. We also req
thatAloc tends to zero for large separation. Since all partic
are identical, we will often omit the indexi.

Other simple examples of local observables are

d„r i j ~ t !2r … ~8!

or

ebV(r i j (t))21, b5~kBT!21, ~9!

and products of these at different times. The time averag
the first one leads to the radial distribution functiong(r ) ~see
Sec. III C!. By the same method one can show that the s
ond one leads to the second virial coefficientB2. Further
examples are

„vi j ~ t1t!2vi j ~ t !…•vi j ~ t ! ~10!

or

l 2

r i j
2 ~ t !

, ~11!
4-2
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CORRELATION FUNCTIONS IN CLASSICAL GASES AT . . . PHYSICAL REVIEW E 65 031204
wherel is the angular momentum in the two-body proble
The first one is essentially the velocity autocorrelation fu
tion of a tagged particle. It is shown in Sec. III C that t
second one leads to a well known expression ofB2 in terms
of the scattering angle. As a final example consider
collision-induced dipole moment of a pair of dissimilar ra
gas atoms@9#. These atoms do not possess a permanen
pole moment, but a transient moment

m„r i j ~ t !,E,l … ~12!

appears during a collision due to the distortion of the el
tron distribution. Apparentlym depends only on relative
quantities~distance and velocity! and vanishes between co
lisions.

I will now give a derivation of the basic expression E
~17! used extensively throughout the rest of the paper.
the moment we also assume that the potential is purely
pulsive.

In a dilute gas, subsequent collisions of the tagged part
are random and uncorrelated events, widely separate
time. SinceAloc(t) is nonzero only for particles closely to
gether, we expect

^A&5Z^Aloc&, ~13!

whereZ is the number of collisions per unit time and^Aloc&
is an average over all collisions. This should be correct p
vided the time span covered by thet i is small versus the time
tcoll between collisions.

Since a collision involves only two particles interactin
with a spherically symmetric potential, a collision is com
pletely characterized by the following quantities: The velo
ity vs of the center of gravity, the angular momentum vec
l which also determines the plane of motion, the energyE in
the center of mass frame, and the timet. By definition,Aloc
is independent ofvs and the direction ofl. For a given col-
lision, characterized byE and l, the average is given by th
time average

^Aloc&E,l5E
2`

`

dt Aloc~t1t1 ,t1t2 , . . . !. ~14!

Therefore we may write

^A&5E
0

`

dEE
0

`

dl Z~E,l !

3E
2`

`

dt Aloc~t1t1 ,t1t2 , . . . !, ~15!

whereZ(E,l ) is the number density of collisions with energ
E and angular momentuml per unit time. This quantity is
well known from the kinetic theory of gases@10#. We have

Z~E,l !54pr~2pmkBT!23/2e2bE2p l , ~16!

wherer is the density,m5m/2 the reduced mass,l the an-
gular momentum,E the energy in the center of mass fram
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andb5(kBT)21. Inserting, we obtain the following expres
sion for the average of a relative observable@9,11#

^A&54pr~2pmkBT!23/2E
0

`

dE e2bEE
0

`

2p l dl

3E
2`

`

dtAloc~t1t1 ,t1t2 , . . . !. ~17!

On the right-hand side theAloc refer to the unique solution o
the two-body problem at definite energyE and angular mo-
mentuml.

We have derived this equation for purely repulsive pote
tials so that there are no bound states. If the potential is
purely repulsive, certain values ofE andl admit several pos-
sible trajectories. ForE.0, at most one of these is a scatte
ing state, the others corresponding to periodic motion~in the
radial coordinate!. Let $Ti(E,l )% be the collection of periods
for a given pair (E,l ) whereT5` corresponds to scattering
Then the generalization of Eq.~17! to arbitrary potentials is
given by

^A&54pr~2pmkBT!23/2E
Emin

`

dE e2bEE
0

`

2p l dl

3(
i
E

0

Ti (E,l )

dt Aloc~t1t1 ,t1t2 , . . . !. ~18!

The proof is somewhat lengthy and relegated to Appendix
The quantum analog of this relation is probably bet

known than its classical limit. It is simply

^A&5
1

Z
Tr e2bHA ~19!

in a representation whereH andL are simultaneously diag
onal. As in the classical case,A must vanish for widely sepa
rated particles and depend only on relative coordinates
velocities. The trace over the center of mass can be
formed and cancels the corresponding factor in the parti
function Z. The remaining term inZ is the partition function
of a single structureless particle with reduced massm,

Z5VS mkBT

2p\2D 3/2

. ~20!

An additional factor ofN is generated by taking the trac
over all particles.

For operators which commute with the angular mome
tum operatorL , a complete orthonormal set$cnl% of eigen-
functions toH andL can be chosen and we obtain the qua
tum analog of Eq.~18!,

^A&5rS 2p\2

mkBTD 3/2

(
nl

~211!e2bEnl^cnluAucnl&. ~21!

Formally, the classical limit is obtained by the replaceme
4-3
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MAX TEUBNER PHYSICAL REVIEW E 65 031204
( ~2l 11!→\22E 2l dl ~22!

(
n

e2bEn^•&n→h21E dEe2bEE dt, ~23!

where^•& denotes a quantum average in staten.
We wish to apply the above result to correlations of re

tive observablesA andB. Suppose for ease of notation th
both depend only on the distancesr j to the reference particle
possibly at different times,

A5(
j

Aloc~r j !, ~24!

B5(
k

Bloc~r k!. ~25!

In the product

AB5(
j

Aloc~r j !Bloc~r j !1(
j Þk

Aloc~r j !Bloc~r k! ~26!

the second term on the right is of orderr2 and, up to higher
order, its average is equal to^A&^B&. We obtain

^AB&2^A&^B&5K (
j

Aloc~r j !Bloc~r j !L . ~27!

The sum on the right-hand side is again a relative observa
We apply Eq.~18! and obtain

^A~ t !B~0!&2^A&^B&

54pr~2pmkBT!23/2E
Emin

`

dE e2bEE
0

`

2p l dl

3(
i
E

0

Ti (E,l )

dt Aloc~t1t !Bloc~t!. ~28!

In the rest of this paper we will be mainly concerned w
purely repulsive potentials. In this case we obtain for
spectrum

SA~v!5E
2`

`

dt eivt@^A~ t !A~0!&2^A&2#

54pr~2pmkBT!23/2

3E
0

`

dE e2bEE
0

`

2p l dl uAloc~v!u2, ~29!

where

Aloc~v!5E
2`

`

dt eivtAloc~ t ! ~30!

is the Fourier transform ofAloc on the trajectory character
ized byE,l .
03120
-

le.

e

III. SOME SIMPLE APPLICATIONS

Before we proceed to the spectra, let us apply the res
of Sec. II to a few simple and well known problems. Th
section contains no new material and only serves to g
some practice in applying Eq.~18! and to introduce some
notation. It may be skipped by most readers.

A. Radial distribution function

Let us first show that

K (
j

d~r i j ~ t !2r !L 54pr 2re2bV(r ). ~31!

To prove it note that the motion is confined to a plane. In t
plane we may decompose the radius vectorr5r i j 5r i2r j as

r ~ t !5r ~ t !n~ t !, n~ t !5S cosu~ t !

sinu~ t !
D , ~32!

wheren is a two-dimensional unit vector. The equations
motion for r (t) andu(t) are

m

2
ṙ 21V~r !1

l 2

2mr 2
5E ~33!

and

u̇5
l

mr 2
, ~34!

where

m5
m

2
~35!

is the reduced mass andl is the angular momentum.
In the time integrals

(
i
E

0

Ti (E,l )

dtd„r i j ~ t !2r … ~36!

introducer i j as a new variable. Since every point is tran
versed twice, this becomes

2(
i
E

ai

bi
d~r i j 2r !

dri j

ṙ i j

, ~37!

where ṙ i j .0 and ai and bi are the two turning points for
periodic motion.~In the case of collisions the upper bound
infinite.! This is equal to

2

ṙ i j ~r !
52Am

2

1

AE2V2
l 2

2m
r 22

, ~38!
4-4
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CORRELATION FUNCTIONS IN CLASSICAL GASES AT . . . PHYSICAL REVIEW E 65 031204
provided r is located in one of the intervals (ai ,bi) and
vanishes otherwise. This condition means that the argum
of the square root must be non-negative.

Now we can perform the energy integration. Multiplyin
by e2bE and setting

E5V1
l 2

2m
r 221x2,

dE

x
52dx, ~39!

we obtain

E
0

`

dE e2bE(
i
E

0

Ti (E,l )

dtd~r i j ~ t !2r !

54Am

2E0

`

dx e2bV2b( l 2/2m)r 222bx2

5A2pmkBTe2bV2b( l 2/2m)r 22
. ~40!

We multiply by 2p l and integrate over the angular momen
The right-hand side becomes

~2pmkBT!3/2r 2e2bV. ~41!

This must be multiplied by 4pr(2pkBT)23/2 and proves the
assertion.

B. Number of bound particles

It is sometimes interesting to decompose the total ra
distribution functiong(r ) into contributions from the bound
and scattering states separately. SettingA51 in Eq.~18! and
performing the sum over the finite periods only, we obta
the average number of bound particles for any given parti

^nb&54pr~2pmkBT!23/2

3E dE e2bEE 2p l dl(
i

Ti~E,l !. ~42!

The radial distribution functiongb(r ) due to the bound par
ticles only is obtained by replacing( iTi by

2

ṙ
5

A2m

AE2V2
l 2

2m
r 22

. ~43!

Integration is over thoseE,l which render the square roo
positive and admit a finite turning point to the right ofr. A
detailed discussion is given elsewhere@8#. Again, the quan-
tum mechanical counterparts are formally much simpler,

^nb&5rS 2p\2

mkBTD 3/2

(
n

e2bEn ~44!

and
03120
nt

.

al

e,

gb~r !5rS 2p\2

mkBTD 3/2

(
n

e2bEnucn~r !u2, ~45!

where the sums run over the bound states.

C. Virial coefficient and scattering angle

Consider the local observable

Aloc~ t !5
l 2

r 2~ t !
5m l u̇~ t !. ~46!

After time and energy integration we find as previously

E dE e2bEE dt
1

r ~ t !2

5E
0

`

r 22A2pmkBT e2bV(r )e2b( l 2/2m)r 22
dr.

~47!

On the other hand, integrating the expression involvingu
over time yields the sum of the changesD iu for all periods.
Comparing we find

l 2A2pmkBTE
0

`

r 22e2bV(r )e2b( l 2/2m)r 22
dr

5m lkBTE d~bE!e2bE(
i

D iu. ~48!

Now we subtract

l 2A2pmkBTE
0

`

r 22 e2b( l 2/2m)r 22
dr5pm lkBT, ~49!

multiply by 2p l dl , and integrate. The left-hand side b
comes

~2pmkBT!3/22mkBTE
0

`

r 2~e2bV(r )21!dr ~50!

and we obtain for the second virial coefficient

2pE
0

`

r 2~e2bV(r )21!dr

52p2~2pmkBT!23/2E d~bE!e2bE

3E
0

`

l 2dlS (
i

D iu2p D . ~51!

In particular, for purely repulsive potentials the sum conta
only one term andDu2p is equal to minus the scatterin
anglex. We obtain
4-5
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2pE
0

`

r 2~12e2bV(r )!dr

52p2~2pmkBT!23/2E
0

`

d~bE!e2bEE
0

`

l 2dlx~E,l !,

~52!

which is equivalent to the expression in Ref.@12#.

IV. POTENTIAL V„r …ÄAr À2

In this section we start with the calculation of the hig
frequency spectra. Gases with inverse square potentials
particularly simple and we do not need the general appar
discussed in Sec. V. Many features of the spectra can
calculated analytically by elementary means.

From the equation of motion Eq.~33!, we obtain the turn-
ing point r 0

r 0
25

1

E S A1
l 2

2m D ~53!

and write the equation of motion in the form

ṙ 25g2S 12
r 0

2

r 2D , ~54!

whereg is the relative velocity at infinity and

E5
1

2
mg2

is the energy. If the origin of time is defined byṙ (0)50, the
solution is

r ~ t !5Ar 0
21g2t2. ~55!

A. Observable rÀ2

The simplest local observable is the potential itself. W
have

r 22~v![E
2`

`

dt eivtr 22~ t !5
p

r 0g
e2vr 0 /g. ~56!

With l5AmA/2 we find after some algebra

E
0

`

ur 22~v!u22p l dl 52p3m2E
1

`

e22vlz/E
dz

z
. ~57!

To integrate over the energy we use

E
0

`

e2bE22vlz/EdE5b21AvtzK1~Avtz!, ~58!

whereK1 is the modified Bessel function and the time co
stantt is defined by

t54bA2mA. ~59!
03120
are
us
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e
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We find

E
0

`

dEE
0

`

2p l dl ur 22~v!u2

52p3m2b21E
1

`
AvtzK1~Avtz!

dz

z
~60!

and, settingx25vtz,

E
0

`

dEE
0

`

2p l dl ur 22~v!u254p3m2b21K0~Avt!.

~61!

For potentials without a hard core let us define a ‘‘therm
radius’’ by

V~r th!5kBT. ~62!

At the distancer 5r th the potential energy is just equal to th
thermal energy. In the present case we may replaceA by

A5kBTrth
2 . ~63!

Using this notation we finally obtain for the spectrum of t
potential energy correlations on a tagged particle

E
2`

`

dt eivt^Vi~ t !Vi~0!&5p5/2~kBT!2rr th
3 tK0~Avt!.

~64!

This relation is exact for allv in a dilute gas.
The example displays a typical feature of high-frequen

spectra: They always seem to decay slower than expo
tially. In the example here, insertingK0(x);Ap/x e2x for
largevt, the right-hand side becomes

p3

A2
~kBT!2rr th

3 t~vt!21/4e2Avt. ~65!

Below we will discuss many more examples of spectra
this type. The first authors who discovered a spectr
;e2(vt)n

with n52/3 seem to be Landau and Teller@1# for
the exponential potentiale2r /a.

Let us replaceA in Eq. ~59! by Eq. ~63!. Then we obtain
the suggestive form

t54
r th

v th
, ~66!

where

v th5AkBT

2m
~67!

is the mean square thermal velocity along thex axis ~say!.
Thereforet, which measures the duration of a collision,
proportional to the time it takes a thermal particle to travel
own diameter. Very similar features will be found for th
other potentials.
4-6



on

ha
I

cy
e

rv
iff

a
e

ly

a

rg

a

s
n

e

gh

e

her.
r is
he

m
at

at

t

n

CORRELATION FUNCTIONS IN CLASSICAL GASES AT . . . PHYSICAL REVIEW E 65 031204
One further point is noteworthy. Checking the calculati
one verifies that for a givenv the main contribution to the
spectrum comes from almost central collisions (l;0) with
energies near

]

]E
~bE12vl/E!50, ~68!

i.e., near

bE;
Avt

2
. ~69!

B. Velocity autocorrelation function

A complete analytic calculation is possible but somew
involved. Since the problem is discussed again in Sec. V
for generaln, I only present the result. In the high-frequen
region the spectrum of the velocity fluctuations of a tagg
particle is given by

E
2`

`

dt eivt^ ṙ i~ t !• ṙ i~0!&

;32p2rr th
4 AkBT

m
~vt!25/4e2Avt. ~70!

Comparing with the spectrum of the potential we obse
that both display the same subexponential decay and d
only in the algebraic prefactors. We will see that this is
general phenomenon. The spectra of generic local obs
ables belonging to the same potential have the same~subex-
ponential! decay. They differ only in prefactors that usual
vary less rapidly withv.

V. GENERAL REMARKS ON ASYMPTOTIC SPECTRA

According to Eq.~29! the first step in calculating spectr
is to estimate the Fourier transformA(v) on individual tra-
jectories. In a second step these are averaged over ene
and angular momenta.

To have something concrete in mind, letA(r ) be some
inverse power of the distance and consider

r 2p~v![E
2`

`

dt
eivt

r p~ t !
, ~71!

where the exponentp is positive.~We will see later in Sec.
VI H that the observablesr 6p are in fact representative for
very large class of observables.!

It is well known, that the asymptotics of the Fourier tran
form is governed by the singularity structure of the integra
in the complex plane. Suppose thatr (t), as a function of the
complex variablet, can be analytically continued into som
strip containing the real axis. Lett* be the minimum of the
imaginary parts of the singularities ofr (t) in the upper half
plane so thatr (t) is analytic in the strip 0,Im(t),t* . Since
r 2p(t) is even int we may assumev.0. We can move the
contour of integration to a parallel to the real axis throu
03120
t
F

d

e
er

rv-

ies

-
d

i t * ~if necessary we can avoid the singularity itself by som
small indentation in the contour!. Then we obtain

r 2p~v!5e2vt* E
2`

`

dt
eivt

r p~ t1 i t * !
. ~72!

If some information is available about the behavior ofr (t)
near the singularity, the integral can be processed furt
The important point to note is that the asymptotic behavio
dominated by the singularity in the upper half plane with t
smallest imaginary partt* @1#.

r (t) satisfies the equation of motion, Eq.~33!,

dr

dt
56A2

m
AE2V~r !2

l 2

2mr 2
~73!

in the whole domain of analyticity. According to a theore
of Cauchy,r (t) is analytic everywhere except possibly
singularities of the right-hand side. These are given byr
50 ~for lÞ0), the singularities ofV(r ), and the zeros of the
expression in the square root. At these zeros, however,r (t) is
analytic. Indeed, near such a pointr 1, the differential equa-
tion simplifies to

dr

dt
5const3Ar 2r 1. ~74!

The solution isr (t)5r 11const3t2 which is analytic atr 1.
We conclude, that the possible singularities are locatedr
50 and at the singularities ofV(r ).

In the simplest situationV(r ) has a single singularity a
r 50. The caseV(r )5Ar2n is studied in detail below. The
Lennard-Jones potential, Eq.~4!, is another example. It will
be discussed in a future paper@8#. In such cases,t* is given
by the imaginary part of

Am

2
E

r 0

0 dr

AE2V~r !2
l 2

2m
r 22

, ~75!

wherer 0 is the turning point.

VI. POTENTIAL V„r …ÄAr Àn

For simplicity we assumen.2. A few remarks about the
casen,2 are made in Sec. VI G. As previously, we ofte
replace the factorA by the ‘‘thermal radius’’ defined by

A5kBTr th
n . ~76!

The value oft* is given by

t* ~E,l !5Am

2
E

0

r 0 dr

AAr2n1
l 2

2m
r 222E

, ~77!

where the turning pointr 05r 0(E,l ) is given by
4-7
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Ar0
2n1

l 2

2m
r 0

222E50. ~78!

A. Fourier transform on individual trajectories

Our first task is to evaluate

E
2`

`

dt
eivt

r p~ t1 i t * !
~79!

for large positivev. In the vicinity of the singularity where
r;0, the equation of motion simplifies to

m

2
ṙ 21Ar2n;0. ~80!

~Here we need the assumptionn.2.! We insert the ansatz

r ~ t !;jc~ t2 i t * !l, ~81!

wherej is some root of unity,c.0, and the complex plane
has a cut fromi t * to i`. We find

l5
2

n12
, ~82!

c21n5
2A

m
l22, ~83!

j21n521. ~84!

Therefore the singularity atr 50 is an algebraic branch
point. In the asymptotic region we may insert the soluti
~81! and obtain forp.0

E
2`

`

dt
eivt

r p~ t1 i t * !
;j2p c2pE

2`

` eivt

tlp
dt

5j2p c2p
2p

G~lp!
e( ip/2)plvlp21.

~85!

Here the contour has been deformed to a loop along
imaginary axis cut from infinity to 0 and back to infinity o
the other side of the cut.

The right-hand side must be real for allp. Therefore

j5e( ip/2)l ~86!

which also satisfiesjn12521. We obtain for the spectrum
on a single trajectory in the asymptotic region

r 2p~v!;
2p

G~lp!
c2pvlp21 e2vt* (E,l ). ~87!

For l 50 andn→2 the right-hand side should tend to th
corresponding results forn52. Using Sec. IV this is checke
easily.
03120
e

Before we proceed let us ask under what conditions
result is expected to be valid. We expect the error to be sm
if the terms neglected in the equation of motion are sm
versus the terms retained. This means

A

r n
@E,

A

r n
@

l 2

2mr 2
. ~88!

Insertingr;ctl and defining

t th5
r th

v th
~89!

we find after some algebra the conditions

vt th@
n12

2
~bE!(1/2)1(1/n),

vt th@
n12

2 S l 2

2mkBTrth
2 D (1/2)1[2/~n22!]

. ~90!

We will verify later that these conditions are indeed satisfi
in the asymptotic region. The next step is to evaluate
double integral

E
0

`

2p l dl E
0

`

dE e2bE22vt* (E,l ) ~91!

for largev.

B. Central collisions

It will be argued in Sec. VI E that almost central collision
make the dominant contribution to the spectra. In particu
they determine the exponential factor in the spectra. In or
to introduce some notation, let us consider purely cen
collisions in this section.

We must estimate the integral

E
0

`

dE e2bE22v t* (E,0) ~92!

for large v. Using Laplace’s method the integral is dom
nated by the energyE5E(v) satisfying

]

]E
@bE12vt* ~E,0!#50. ~93!

For l 50, t* can be calculated,

t* ~E,0!5
Ap

2

GS 1

2
1

1

nD
GS 1

nD
r th

v th
~bE!2(1/2)2(1/n), ~94!

where againv th5(kBT/2m)1/2. Let

n5S 3

2
1

1

nD 21

~95!
4-8
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and define a time constant

t5c0

r th

v th
, ~96!

where

c05Ap~12n!21/n

GS 1

n D
GS 1

nD . ~97!

Up to the numerical constantc0 , t is the time it takes a
thermal particle to travel its own diameter.

From Eq.~93! we find that the dominant energies for co
lisions with frequencyv are close to

bE~v!5~12n!~vt!n ~98!

and that

E
0

`

dE e2bE22v t* (E,0)

;kBTA2pn~12n!~vt!n/2e2(vt)n
. ~99!

It is also interesting to estimate the width of energ
around the dominant energyE(v) which contribute to the
spectrum. This is given by

^@bE2bE~v!#2&;n~12n!~vt!n. ~100!

The width increases withv, but the relative width^@E
2E(v)#2&/E(v)2 decreases;n(12n)21(vt)2n.

C. Double integral for large frequencies

In this section we evaluate the double integral~91! in the
high-frequency domain. In Eq.~77! we setr 5r 0u and obtain

t* ~E,l !5Am

2

1

AA
r 0

(n/2)11

3E
0

1 du

Au2n211
l 2

2mA
r 0

n22~u2221!

.

~101!

Defining s by

r 05S A

ED 1/n

s ~102!

we have

l 2

2mA
r 0

n225sn21 ~103!

and we writet* in the form
03120
s

t* ~E,l !5Am

2
A1/nE2(1/2)2(1/n)s(n/2)11

3E
0

1 du

Au2n211~sn21!~u2221!

[Am

2
A1/nE2(1/2)2(1/n) f ~s!. ~104!

We shall later need

f ~1!5Ap

GS 1

2
1

1

nD
GS 1

nD ,

f 8~1!5

sinS p

n D
Ap

GS 3

2
2

1

nDGS 1

nD . ~105!

The functionf (s) is monotonically increasing fors.1. In-
deed, denoting the expression under the square root bya, we
have

f 8~s!5sn/2E
0

1 du

a3/2H S n

2
11D @u2n21

1~sn21!~u2221!#2
n

2
sn~u2221!J . ~106!

Sinceu2n21.u2221 the braces are larger than

~u2221!F S n

2
11D sn2

n

2
snG5~u2221!sn ~107!

which shows thatf 8(s).0.
Using

l 252mA2/nE12(2/n)~s22s22n!, s.1 ~108!

we change integration overl into integration overs with

2l dl 52mA2/nE12(2/n)@2s2~22n!s12n#ds ~109!

and obtain

E
0

`

2p l dl e22vt* (E,l )

52pmA2/nE12(2/n)E
1

`

ds@2s2~22n!s12n#e22vt* (E,s)

~110!

and
4-9
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E
0

`

dEE
0

`

2p ldle2bE22vt* (E,l )

52pmA2/nE
1

`

ds~2s2~22n!s12n!

3E
0

`

dE E12(2/n)e2bE22vt* (E,s). ~111!

Using Appendix B we can estimate the integral overE for
largev. In the notation of Appendix B we have

y5vt
f ~s!

f ~1!
, h512

2

n
~112!

and the integral overE is asymptotically for largev

b (2/n)22A2pn~12n!~12n!hyn[(1/2)1h]e2yn
. ~113!

We obtain

E
0

`

dEE
0

`

2p l dl e2bE22vt* (E,l )

;2pmb22~bA!2/nA2pn~12n!~12n!h

3E
1

`

ds~2s2~22n!s12n!yn[(1/2)1h]e2yn
.

~114!

Since f (s) is monotonically increasing ins, for largev the
dominant contribution to the integral comes froms;1.
Therefore the right-hand side is asymptotically

;2pmb22~bA!2/nnA2pn~12n!~12n!h

3E
1

`

ds yn[(1/2)1h] e2yn

;2pmb22~bA!2/nnA2pn~12n!~12n!h

3~vt!n[(1/2)1h]E
1

`

ds e2(vt)n$11n[ f 8(1)/ f (1)](s21)%

~115!

and we obtain finally

E
0

`

dE E
0

`

2p l dl e2bE22vt* (E,l )

;2pmb22~bA!2/n
n

n
A2pn~12n! ~12n!h

3
f ~1!

f 8~1!
~vt!n[ 2(1/2)1h] e2(vt)n

. ~116!
03120
D. The asymptotic spectra

Collecting terms we write our result for the spectra of t
observable

r i
2p5(

j Þ i

1

r i j
p ~ t !

~117!

in the asymptotic region in the form

S~v!5E
2`

`

dt eivt ^r i
2p~ t !r i

2p~0!&;a ~vt!s e2(vt)n
.

~118!

The exponentsn ands are given by

n5
2n

3n12
~119!

and

s5
4p

n12
2

5n18

3n12
. ~120!

The time constantt is defined in Eq.~96!. The amplitudea
has the form

a5a ~r r th
3 ! t r th

22p, ~121!

wherea is a dimensionless constant. The dimensions of
other terms are obvious:r r th

3 corresponds to a dimensionles
volume fraction,t corresponds to the integration over tim
in S(v), and r th

22p stems from the correlation
^r (0)2p r (t)2p& considered.a is given by

a54p c0S 2p

G~pl! D
2

@~n12!c0#22pl
n

n

3A2n~12n! ~12n!12(2/n)

3

GS 1

2
1

1

nDGS 12
1

nD
GS 3

2
2

1

nDGS 1

nD . ~122!

l and c0 are defined in Eqs.~82! and ~97!, respectively. In
particular, forn5p52 we recover the previous results
Sec. IV witha5p3/A2.

E. Dominant energy, angular momentum, and deflection angle
seen at frequencyv

At this point let us summarize what we have learn
about the nature of the collisions seen at frequencyv in the
spectra. In Sec. VI B it was shown that the energy of
collisions seen at frequencyv is given by Eq.~98!. The
higher the frequency, the more energetic the collisions t
contribute to a spectrum at this frequency.

Concerning the angular momentum, we obtain from E
~108!
4-10
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l 2

2m kBT rth
2

5~bE!12(2/n) s2~12s2n!. ~123!

For high frequencys is close to 1. More precisely, it follows
from Eq. ~115! that s21 is exponentially distributed and

^s21&;
f ~1!

n f 8~1!
~vt!2n. ~124!

This implies, in conjunction with Eq.~98!, that the dominant
angular momenta seen at frequencyv satisfy

K l 2

2m kBT rth
2 L ;g ~vt!22n/n, ~125!

where the constant isg5(n/n)@ f (1)/ f 8(1)#(12n)12(2/n).
The higher the frequency, the smaller the angular mome
of the collisions contributing to a spectrum.

The fact thatl 2 is so small in the asymptotic region su
gests a more transparent albeit less rigorous way to estim
the double integral. Expandingt* (E,l ) aboutl 50 and keep-
ing only the first two terms, the double integral becomes

E
0

`

dE e2bEE
0

`

2p l dl e22vt* (E,0)22v(]t* /] l 2)(E,0) l 2.

~126!

This suggests thatl 2 is distributed exponentially with

^ l 2&;S 2v
]t*

] l 2
„E~v!,0…D 21

~127!

which indeed coincides with Eq.~125!. The double integral
then becomes asymptotically

p^ l 2&E
0

`

dE e2bE22vt* (E,0)5p kBT^ l 2&A2pn~12n!

3~vt!n/2 e2(vt)n
, ~128!

which coincides with Eq.~116! as it should.
We have stated repeatedly that the dominant collisions

high frequency are almost central. Now we can make
more precise. After some algebra one obtains for the ang
deflectionx of a collision with angular momentuml and
energyE,

p2x5A 2 l 2

mkBT rth
2 ~bE!2(1/2)1(1/n) s(n/2)21

3E
0

1 du

A12un1~sn21!~12u2!
, ~129!

wheres has the same meaning as previously. Lettings→1
on the right-hand side and using Eqs.~98! and ~125! we
obtain after a short calculation

^~p2x!2&;gx~vt!2n, ~130!
03120
ta

te

r
is
of

where the constant is given by

gx5
3n12

n~n22!
cot

p

n
. ~131!

The deflection angle of the collisions seen in the spectra
large frequencies indeed tends top.

Let us finally check the conditions~90!. InsertingbE(v)
from Eq. ~98!, the first condition amounts to 1.n@(1/2)
1(1/n)# which is satisfied. From Eq.~125! it follows that
the second condition is also amply satisfied.

F. Application: Velocity autocorrelation function

As a simple application let us calculate the spectrum
the velocity fluctuations of a tagged particle in the hig
frequency domain. We must first show that the angular
locity can be neglected versus the radial velocityṙ . Indeed,
from r5r n we obtain using Eq.~34!

ṙ5 ṙ n1
l

mr
n̂, ~132!

where n̂ is a unit vector normal ton. The asymptotics is
determined by the region near the singularity atr 50 as ex-
plained in Sec. VI A. The angular velocity can be neglec
provided

u ṙ ~ t !u@
l

mur ~ t !u
~133!

in that region. This amounts to

const@ l ut2 i t * u122l. ~134!

Since the relevantl are small and 122l5(n22)/(n12)
>0, this is satisfied.

From Sec. VI A we obtain further

ṙ;A2
2A

m
r 2n/2 ~135!

near the singular point. This implies that up to a const
factor the spectrum ofṙ is the same as ofr 2n/2. In particular
the exponents is given by

sva f5
n2214n216

~n12!~3n12!
. ~136!

Since for particlei in a collision

mr̈ i5m r̈ , ~137!

we obtain the spectrum of the velocity autocorrelation fun
tion in the high-frequency region

E
2`

`

dt eivt^ ṙ i~ t !• ṙ i~0!&

;ava f v th
2 t ~r r th

3 ! ~vt!sva f e2(vt)n
, ~138!
4-11
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whereava f is given bya for p5n/2.
An alternative calculation could proceed as follows: In t

high-frequency domain the equation of motion for thei th
particle

mr̈ i52(
j Þ i

ni j V8~r i j ! ~139!

can again be replaced by the radial part

mr̈i52(
j Þ i

V8~r i j !5nA(
j Þ i

1

r i j
n11~ t !

. ~140!

Utilizing Eq. ~118! for p5n11 we obtain

E
2`

`

dt eivt^ r̈ i~ t !• r̈ i~0!&

;
n2A2

m2
a ~r r th

3 ! t r th
22n22 ~vt!s e2(vt)n

,

~141!

wherea ands must be evaluated forp5n11. A short cal-
culation verifies that the two expressions for the veloc
autocorrelation function are equivalent.

G. Potentials with nË2

Up to now we have always assumedn>2. Softer poten-
tials with n,2 can also be studied, but off central collisio
play an increasingly important role. This complicates t
analysis and somewhat modifies the preexponential fac
For example, in the case of the Coulomb potential one
show that the high-frequency spectra are proportional to

~vt!sce2(vt)2/5
, ~142!

where the exponent is given by

sc5
20p237

15
. ~143!

This exponent is almost equal to the previouss when one
formally putsn51 in Eq. ~120!. This would predict

s5
20p239

15
. ~144!

H. Other binary observables

For definiteness we have concentrated on the observa
r 2p(t). However, for most other local observablesA(r ) the
results are very similar.

As usual, the spectrum is dominated by the singularity
A„r (t)… with the smallest imaginary part in the upper ha
plane. Several possibilities can arise.

It may happen thatA„r (t)… becomes singular at som
point r 8 even before the singularity inV(r ) is encountered.
Consider for example the observable (11r 2)21. This has a
03120
e
r.
n

les

f

pole atr 5 i and, depending on the potential, there may b
t8 with r (t8)5 i and 0,Im(t8),t* . The arguments of the
preceding sections can be applied with little change to
situation providedt* is replaced by Im(t8) with

t85Am

2
E

r 0

r 8 dr

AE2V~r !2
l 2

2m
r 22

. ~145!

In the high-energy region we have

Im~ t8!;E21/2. ~146!

This leads to the exponentn52/3 ~see the discussion in Sec
IX !.

Another possibility is thatA(t) is regular ati t * even
thoughV„r (t)… is singular there. This happens, for examp
for n52 and the observablee2r (t)2

. This is one of the ex-
ceptional cases where the spectrum decays exponent
Such situations must be studied separately.

In the generic case the relevant singularity inA„r (t)… is
the one inherited fromV(r ). In this case almost all of the
work has been done. The asymptotic evaluation of the dou
integral in Sec. VI C is independent of the observable.
remains to determine the spectrum in the vicinity of the s
gularity at r 50. This has been done in Sec. VI A forr 2p.
Suppose first that

A~r !5r 2pB~r !, ~147!

wherep.0 andB(0) is finite and nonzero. Then, becau
the spectrum depends only on the behavior ofA(r ) near r
50, asymptotically

A~v!5B~0! r 2p~v!. ~148!

The spectrum ofA(r ) is proportional to the spectrum ofr 2p

of Sec. VI D.
Now let

A~r !5r qB~r !, ~149!

whereq.0 andB(0) is finite and nonzero. In the integratio
along the loop mentioned in Sec. VI A, we haver
5ceiplusul on the right edge of the cut andr 5c e2 iplusul
on the left edge. Therefore the integral over the loop
comes

i E
0

`

cq eipql sql e2vsds2 i E
0

`

cq e2 ipql sql e2vsds

522cq sin~pql! G~ql11! v2ql21 ~150!

and we obtain asymptotically

A~v!;2B~0!2 cq sin~pql! G~ql11! v2ql21 e2vt* (E,l ).
~151!

Using the relationG(2x)G(11x)52p/sin(px), we note
that this is just the analytic continuation of Eq.~148! to nega-
4-12
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tive p @compare Eq.~87!#. Equation~151! is correct only if
ql is not an integer. Otherwise the singularity ofr q at r
50 is of lower order and must be studied separately.

Finally, if A(0) is finite and nonzero, we must replac
A(r ) by A(r )2A(0) in order to obtain an observable whic
is singular atr 50.

For small values ofp and q, the convergence to th
asymptotic expressions above is quite slow. To see this
to obtain an expression valid for a larger range ofv, con-
sider for example the observableA(r )5e2b r(t) whereb is
some inverse length. Inserting the singular solutio
ce6 iplusul we obtain

~e2b r!~v!; f e2vt* , ~152!

where

f 5 i E
0

`

ds e2vs~e2bceiplsl
2e2bce2 iplsl

!

5 i E
0

`

ds e2vs2bc cospl sl

3~e2bci sin pl sl
2ebcisin pl sl

!

52E
0

`

ds e2vs2bc cos(pl)sl
sin@bc sin~pl!sl#.

~153!

For large v this tends to Eq.~151! for q51 and B(0)
52b with a relative errorO(v)2l. The same method ca
be used to obtain approximations for most other observa
in the high-frequency domain.

VII. DENSE LIQUIDS

In dense liquids the low-frequency spectra are quite
ferent from their gaseous counterparts. At high-frequen
however, the situation greatly simplifies. As in gases,
high-frequency spectra are due to rare binary collisions w
high energy.

It has been argued that these collisions are not indep
dent but occur in groups@6#. While this is true, we have see
previously that the collisions dominating the high-frequen
spectra are almost central. According to Eq.~130! the deflec-
tion angle x of the collisions seen in the high-frequenc
spectra tends top. An alternative quantity to gauge centrali
is the impact parameter

b5
l

A2mE
. ~154!

A dimensionless measure for centrality is the expecta
value of (b/r th)2. From Eq. ~125! we obtain in the
asymptotic region

K b2

r th
2 L ;

g

12n
~vt!2(2n14)/(3n12). ~155!
03120
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This tends to zero for largevt and demonstrates that th
collisions which contribute to the high-frequency spectra
almost central even in fluids.

Now we can return to the argument that collisions in li
uids are not necessarily independent. Of all the collisions
a group~a ‘‘hot spot’’! there is rarely a collision sufficiently
central to satisfy Eqs.~130! or ~155! and to be seen in the
spectra. Even if one of these collisions is central enough,
preceding or subsequent collisions in this group have
overwhelmingly small probability to make a second cent
collision. It is this stringent condition on centrality that gua
antees that the collisions seen in the high-frequency spe
are independent, even in a dense liquid.

The spectra are dominated by a small region near
turning point where the particle spends only a very sh
time. During this time the configuration of the environme
is practically unchanged. Therefore, we again have indep
dent scattering events in a time-independent potential.
potential, however, differs in several aspects from the ga
is different in every collision; it is in general not spherical
symmetrical, and it has no well defined limit for larger.

The high-frequency spectra are determined by the tra
tories of a pair of nearby particles in the vicinity of the tur
ing point. The number density of such a pair at distancer and
with velocitiesv1 ,v2 is given by

r g~r !w~v1!w~v2!, ~156!

wherew(v) is the Maxwell velocity distribution. The trajec
tories are determined by Newtons equations with initial co
ditions

r 1~0!50, ṙ 15v1 , ~157!

r 2~0!5r , ṙ 25v2 . ~158!

Suppose for a moment that the potentials in the fluid a
in the gas are identical. Then, with the same initial con
tions, the trajectories are also identical. This suggests for
ratio of the high-frequency spectra in the fluid and in the g
@6,4#

Sf l~v!

Sgas~v!
5

r f l

rgas

gf l~r 0!

ggas~r 0!
, ~159!

wherer 0 is the turning point.
In the high-frequency domain the force from the enviro

ment is very small compared to the force from the dire
potentialV(r ). This suggests that Eq.~159! might be exact at
the asymptotic limit. This, however, is not true. It turns o
that a small and bounded perturbation of the potential g
erates an additional factor which varies slowly with the fr
quency @8#. In any case, the preceding arguments sugg
that the exponential factore2(vt)n

is also present in dens
liquids.

VIII. OTHER POTENTIALS

The method used in this paper can be applied to m
other potentials. Essentially the only restriction is that t
4-13
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potential can be analytically continued into the complexr
plane. This rules out potentials with hard core like the ha
sphere potential. In a future paper@8# various perturbations
of V(r )5Ar2n will be studied as well as potentials wit
inaccessible regions. The qualitative result is similar: In
high-frequency domain the spectra are dominated by alm
central collisions with high energy. Up to a prefactor whi
usually varies less rapidly withv, generic high frequency
spectra behave as

;e2Min$bE1v t* (E)%, ~160!

where t* is that singularity ofV„r (t)… in the upper-halft
plane closest to the real axis and the minimum is o
E.0.

IX. UNIVERSAL UPPER BOUND ON EXPONENT n

It seems that for all potentials the generic spectra u
mately decay slower than exponentially@13#. In fact, the ul-
timate decay seems to be not faster than;e2const3v2/3

. The
inequality

n<
2

3
~161!

follows from Eq.~160!, providedt* (E) decays for large en
ergies at least as fast asE21/2. I present a few arguments i
favor of the latter conjecture.

Consider first a potentialV(r ) with a single singular point
at r 50 where it diverges to infinity. Every decent potent
of this kind satisfies for sufficiently smallr

V9~r !.0. ~162!

In

t* ~E!5Am

2E0

r 0 dr

AV~r !2E
, ~163!

wherer 0 is the turning point withV(r 0)5E, we introduce

V~r !2E5V~r !2V~r 0!>~r 2r 0!V8~r 0! ~164!

and find the inequality

t* ~E!,A2mA r 0

2V8~r 0!
. ~165!

We employ the trivial inequality@er V(r )#8,0 or V8(r )
1V(r ),0 and obtain

t* ~E!,A2mAr 0

E
. ~166!

This proves the conjecture for this class of potentials.
addition, if V(r ) increases stronger than any power forr
→0, it is easy to see thatn52/3 in this case.
03120
-

e
st

r

i-

l

n

A more qualitative argument for potentials with a sing
larity on the real axis runs as follows. LetV(r ) be singular at
r 50 and expandV into a Laurent series

V~r !; (
n.0

anr 2n ~167!

with an>0 for sufficiently largen. For collisions with higher
and higher energy, steeper and steeper portions of the po
tial are probed. This roughly corresponds to a poten
;r 2n where n increases with the collision energy. Takin
n→` in Eq. ~119! leads ton52/3. This suggests that th
exponentn is always equal to its upper limit for potentia
which grow stronger than any power at their singularity.

Consider now potentials with an inaccessible region l
V(r )5(r 2a)2n. With regard to central collisions, this po
tential behaves liker 2n with a trivial shift of the origin.
Since the exponential factors are determined by the cen
collisions, they are identical.

Suppose next thatV(r ) is analytic and bounded on th
real axis and that the relevant singularity is at a finite poinr s
in the complex plane. Thent* is given by the imaginary par
of

Am

2E0

r s dr

AE2V~r !
. ~168!

The problem is simple if the potential is finite atr s . In this
case we havet* ;E21/2 for large E which again impliesn
52/3.

If the potential is infinite atr s , the situation is not so
transparent. For simplicity suppose that the singularity is
ixs and thatV( ix) is real for 0,x,xs . Suppose also tha
V( ix) and@ ln V(ix)#8 are monotonically increasing to infinity
for x→xs . The imaginary part of

E
0

ixs dx

AE2V~x!
5 i E

0

xs dx

AE2V~ ix !
~169!

is given by

1

AE
E

0

xe dx

A12
V~ ix !

V~ ixe!

, ~170!

where V( ixe)5E. We want to show that the integral i
bounded away from 0 and infinity forE→`. We do this by
constructing upper and lower bounds.

Since the integrand is.1, a lower bound to the integral i
xe which tends toxs . To construct an upper bound we us
the monotonicity of@ ln V(ix)#8. This implies

ln V~ ixe!2 ln V~ ix !>@ ln V~ ix !#8~xe2x! ~171!

or

12
V~ ix !

V~ ixe!
>12e2[ ln V( ix)] 8(xe2x). ~172!
4-14
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Inserting we obtain for the integral the upper bound

E
0

xe
dx~12e2[ ln V( ix)] 8(xe2x)!21/2 ~173!

which tends to a finite limit forxe→xs . As a result t*
;E21/2 for largeE which implies againn52/3.

As an example consider the potential

V~r !5cosh22r . ~174!

Similar to the exponential potential it permits an analy
solution. Omitting physical constants, forE.1 the solution
to

ṙ 21cosh22r 5E ~175!

is given by

r ~ t !5sinh21SAE21

E
sinh~AE!t D . ~176!

The singular points are logarithmic branch points at

AE tn56 ln
AE11

AE21
1S n1

1

2Dp i , ~177!

wheren is any integer. Here

t* 5
p

2AE
~178!

for all E which impliesn52/3. In conclusion, it seems tha
for generic potentials~where the relevant singularity is a
essential singularity! the exponentn is equal to 2/3. Only if
the order of the relevant singularity is finite~a pole or an
algebraic branch point! n takes values smaller than 2/3.

X. QUANTUM MECHANICS

It is well known that for very high frequencies collision
must be treated quantum mechanically. As a rule of thu
quantum mechanical effects can be neglected in dyna
phenomena at equilibrium whenever

\v

kBT
!1. ~179!

An interesting by-product of the theory presented above
more precise location of the classical quantum boundary
equilibrium correlations.

Two conditions must be met if the spectra can be trea
classically. One condition is that the angular momenta of
dominant collisions are much greater than\. Using Eq.~125!
this can be written as

lB

r th
!2pAg ~vt!2n/n, ~180!

where
03120
b,
ic

a
r

d
e

lB5
2p\

A2mkBT
~181!

is the thermal de Broglie wavelength.
The second condition stems from central collisions in

radial coordinate. I briefly sketch the results. A detailed d
cussion will be published elsewhere@14#.

Let $cE(r )% be the eigenfunctions of the scattering sta
in the energy representation normalized according to

E
0

`

cE* ~x!cE~y! dE52p\ d~x2y! ~182!

and let

C~E,E8!5^cEuAucE8& ~183!

be the matrix elements of some operatorA. One derives the
standard relations

E
2`

`

dt eivt^A~ t !A~0!&5E
0

`

dE e2bEuC~E,E1\v!u2

~184!

and

E
2`

`

dt eivt^A~0!A~ t !&5E
\v

`

dE e2bEuC~E,E2\v!u2

5e2b\vE
2`

`

dt eivt^A~ t !A~0!&,

~185!

where the operatorA is in the Heisenberg representation a
v.0.

In the classical limit the matrix elements must tend to t
Fourier coefficients of the corresponding classical observa
Acl(t), i.e.,

C~E,E1\v!→E
2`

`

dt eivtAcl~ t !. ~186!

Consider first the diagonal matrix elements. Up to an u
interesting factor from normalization, for operatorsr 2p the
diagonalC(E,E) depends on the single dimensionless p
rameter

r th

lB
~bE!(1/2)2(1/n). ~187!

For n.2 the classical limit\→0 is identical to the high-
energy limit at fixed\. Therefore, for high-energy collisions
the diagonal matrix elements take their classical values
the off-diagonal matrix elements there appears the sec
dimensionless parameter\v/E. These matrix elements ten
to their classical counterparts provided

\v

E
!1. ~188!
4-15
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The dominant energies seen in the spectra at frequencyv are
close toE(v) of Eq. ~98!. Inserting we obtain after som
rearrangement the condition

lB

r th
!2pc0~12n!~vt!211n, ~189!

wherec0 is defined in Eq.~97!. For sufficiently low frequen-
cies both inequalities~180! and ~189! are satisfied which
indicates classical behavior. When they fail quantum effe
become important.
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APPENDIX A: PROOF OF EQ. „18…

Consider a relative binary observableA that depends on
the position vectorr5r12r2 of two particles at times
t1 ,t2 , . . . . By considering limits, this includes a possib
dependence on relative velocities.

Let the positions and momenta of the particles at so
initial time t0 be r1 ,r2 ,p1 ,p2. Newton’s equations then de
termine the value of ther i(t) and pi(t) for all times in the
future and in the past. Inserting the values fort5t1 ,t2 , . . .
into A, the observable becomes a function of the initial v
uesr5r12r2 and 2p5p12p2 which we denote byA(r ,p).
The average ofA is an average ofA(r ,p) over the initial
ensemble.

For a dilute gas of densityr the probability density of the
initial ensemble is

r w~p1!w~p2! e2bV(r ) dp1dp2dr , ~A1!

where

w~p!5~2pmkBT!23/2e2p2/(2mkBT) ~A2!

is the Maxwell velocity distribution. Therefore

^A&5rE dp1 w~p1!E dp2 w~p2!E dr e2bV(r ) A~r ,p!.

~A3!

Our first task is to integrate out the motion of the center
mass.

Let ps be the momentum of the center of mass andp be
the relative momentum. Then

p15p1
1

2
ps , ~A4!

p252p1
1

2
ps . ~A5!

The Jacobian for this transformation is equal to 1 and
03120
ts

-

e

-

f

w~p1!w~p2!5~2pmkBT!23 e2p2/(2mkBT) e2ps
2/(4mkBT).

~A6!

Integration overps produces a factor (4pmkBT)3/2, and the
result of integrating out the motion of the center of mass

^A&5r ~2pmkBT!23/2E E dr dp e2bEA~r ,p!, ~A7!

where

E5
p2

2m
1V~r ! ~A8!

is the energy in the center of mass system.
Now we make use of the fact that the problem is rotatio

ally invariant and the motion is confined to a plane. In t
following we often omit the integrande2bEA(r ,p).

We write

E E dr dp5E E dr dpE dL d (3)~L2r3p!, ~A9!

rotate the angular momentum vector into thez axis, and ob-
tain for the right-hand side

4pE E dr dpE
0

`

dl l 2d (3)~ l e32r3p!, ~A10!

wheree3 is the unit vector in thez direction. This is equal to

4pE E dr dpE
0

`

dl l 2d„~r3p!1…d„~r3p!2…d„l 2~r3p!3)

54pE E dr dp „~r3p!3…
2d„~r3p!1…d„~r3p!2….

~A11!

The region of integration in the second line is (r3p)3.0.
Now we use the fact that the integrand is independent or 3
andp3. The integral overr 3 andp3 is

E dr3E dp3 d~r 2p32r 3p2!d~r 1p32r 3p1!. ~A12!

Setting

S x

yD 5S r 2 2p2

2r 1 p1
D S p3

r 3
D ~A13!

and noting that the determinant is nonzero we obtain for
integration

1

~r3p!3
. ~A14!

Therefore we obtain

E E dr dp54pE E d2r d2p~r3p!, ~A15!

where integration is over the regionr3p.0.
Now we introduce polar coordinates

x5r cosu, y5r sinu. ~A16!
4-16
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The conjugate momenta are

pr5m ṙ , pu5mr 2u̇. ~A17!

Because every point transformation is canonical and
phase volume is invariant under canonical transformatio
we obtain

E E d18r d3p54pE E E E pu dr du dpr dpu .

~A18!

We perform a second canonical transformation from the
ordinatesr ,u and momentapr , pu to new coordinatest, u0
and new momentaE, l . To this end, consider Hamilton’
characteristic functionW(r ,u). It satisfies the Hamilton-
Jacobi equation

1

2m F S ]W

]r D 2

1
1

r 2 S ]W

]u D 2G1V~r !5E. ~A19!

u is a cyclic coordinate and the Hamilton-Jacobi equation
separable. We insert the ansatz

W5Wr~r ,l ,E!1 l u ~A20!

and obtain

1

2m F S ]Wr

]r D 2

1
l 2

r 2G1V~r !5E. ~A21!

W depends on the old coordinatesr ,u and the new momenta
E,l . As a canonical transformation,W transforms the Hamil-
tonian into the constantE and generates new coordinates v

Q15
]W

]E
, ~A22!

Q25
]W

] l
. ~A23!

Hamilton’s canonical equations withH[E produce the
equations of motionQ̇151,Q̇250. ThereforeQ1 is equal to
the time with respect to some reference timet0, andQ2 is
constant. According to Eq.~A20! Q2 is equal to a reference
angleu0.

Using again the invariance of the phase volume with
spect to canonical transformations we obtain

E E dr dp54pE dEE l dl E du0E dt. ~A24!

The integrand is invariant with respect to rotations in t
plane of the motion. Therefore the integral becomes

E E dr dp54pE dEE 2p l dl E dt. ~A25!

This completes the formal development.
We must now study the mapping
03120
e
s,

-

s

-

~r ,pr ,pu!↔~E,l ,t ! ~A26!

in some more detail. In particular we must know under wh
conditions the mapping is bijective. Sincepu5 l , it is suffi-
cient to study the one-dimensional canonical transformat

~r ,pr ,!↔~E,t ! ~A27!

induced by the effective potential

Ve f f5V~r !1
l 2

2mr 2
. ~A28!

Every possible motion is either unbounded or bound
Unbounded trajectories are scattering states, beginning
ending at infinity with a single turning point in between.
the motion is bounded it is, apart from certain singular cas
periodic inr. As (r ,pr) traverses such a trajectory, the ima
in the (E,t) plane is an interval parallel to theE axis. For
unbounded motion the time extends from2` to 1`. For
periodic motion r and pr take the same values after on
periodT. The time interval then extends over this period.

A fixed energyE may admit a finite number of trajecto
ries, at most one of these is unbounded. As (r ,pr) traverses
these trajectories, each trajectory maps onto the corresp
ing time interval. In such a case, the integral over time
comes the sum over all periods admitted

(
i
E

0

Ti
dt. ~A29!

APPENDIX B

We want to estimate the integral

E
0

`

e2x2vx2a
dx ~B1!

for largev. Settingx5vny with

n5
1

11a
. ~B2!

The integral becomes

vnE
0

`

e2vn(y1y2a) dy. ~B3!

Now we can apply Laplace’s method. The minimum
f (y)5y1y2a is located at

ym5a1/(a11) ~B4!

and the value at the minimum is

f m5ym1ymym
2a215~11a21!ym . ~B5!

Therefore we obtain for largev
4-17
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E
0

`

e2x2vx2a
dx;A2p

f m9
vn/2 e2vn f m. ~B6!

Inserting

1

f m9
5

a

~a11!2
f m ~B7!

we obtain

E
0

`

e2x2vx2a
dx;

A2pa

a11
yn/2 e2yn

, ~B8!
,

03120
where

y5~ f m!1/n v. ~B9!

In a similar manner we find

E
0

`

xh e2x2vx2a
dx;

A2pa

a11
~12n!h yn[(1/2)1h]e2yn

.

~B10!
,
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