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Correlation functions in classical gases at high frequency
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A general procedure is outlined to determine the exact asymptotic form of spectra in classical gases at high
frequency. Examples are the force-force correlation or the velocity autocorrelation function of a tagged
particle. For purely repulsive potentials of the form “Ar the asymptotic spectra are proportional to
w’exd —(w7)"]. Exponentr and time constant depend only on the interparticle potential, while exponent
depends in addition on the correlation studied. The analysis makes use of the fact that the high-frequency
spectra are dominated by high-energy binary collisions. It is argued that for arbitrary potentials the spectra
decay slower than exp{constx w?®) and that the results are also relevant for dense fluids. The frequency
range is estimated where quantum effects become important.
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[. INTRODUCTION bation. Therefore the spectra in the fluid and in the gas phase
are expected to be proportiongt,6]. | comment on this
Theoretical studies of high-frequency spectra in classicapoint later.
fluids seem to be rare. This is somewhat surprising, since We conclude that the spectra in the high-frequency do-
such spectra play an important role for the dynamics ofmain are known once the two-body problem is controlled.
chemical reactions. For example, the process of vibrationahpparently the first authors to use this approach were again
energy relaxation of excited molecules in solution is of cen-Landau and Tellef1]. For the special case of an exponential
tral importance for the understanding of reaction dynamics irpotential and considering central collisions only, they found
the gas and liquid phase. The elementary step in this proce#s the asymptotic domain
involves the transfer of a quantum of vibrational energy into
translational degrees of freedom of the solvent. The theoret-
ical description usually is based on first order perturbation
theory. This predicts for the relaxation rate of a harmonic
oscillator with frequencyw, in a thermal environment the where the time constantdepends on the potential, the tem-
Landau-Teller formuld1—-4] perature, and the mass of the molecules.
Landau and Teller’s result, E@3), does not seem to have
received the attention it deserves. The reason, presumably, is
2 KkgT Se(wo), D) that Eq.(3) is not a true asymptotic relation and cannot be
used to calculate rate constants. These authors were only
interested in qualitative features of the asymptotic spectrum.
They neglected all noncentral collisions, and did not bother
oo about the solvent density which determines the collision fre-
SF(Q,):J dt eiwt<|:(t)|:(o)> 2) quency. Such effects generate additional frequency-
—o dependent factors which, however, vary less rapidly than the
exponential. It is the purpose of this paper to supply these
is the spectrum of the fluctuating solvent forleét) exerted additional factors, at least for some potentials in the gas
on the vibrational coordinate of the solute guds the mass phase. This will transform Landau and Teller’s result into a
of the oscillator. In principle, the right-hand side should betrue asymptotic relation which can be used to quantitatively
evaluated at the quantum level, but usually just the classicaredict rate constants in the high-frequency domain.
correlation function is inserted. In particular we will pose and partially answer the follow-
In real systems, oscillator frequencies range upwtp ing questions.
~10' sec ! which corresponds to the H-H oscillation. At (1) Is it possible to sharpen E¢B) into a true asymptotic
such frequencies all collective motion of the solvent is fro-relation and what is the form of the preexponential factors?
zen. The only processes which contribute to the spectra in (2) How can one calculate the time constanfor arbi-
this frequency range are rare high-energy binary collisiongrary potentials?
(IBC model[5-7]). This is a vast simplification. In the fre- (3) Do all spectra decay weaker than exponentially?
guency range of interest the many-body dynamics reduces to (4) Does the exponent 2/3 have any significance beyond
the two-body problem of binary collisions in a static poten-the exponential potential considered by Landau and Teller?
tial. In the gas phase the potential is simply the binary po- As argued above, the answer to these questions is not only
tential between the molecules. In a fluid phase one must adah amusing exercise in statistical mechanics and complex
the potential which arises from th&ozen environment. In  variables, but of considerable importance to chemical dy-
the high-frequency, high-energy range this is a small perturnamics. An additional motivation for analytical studies

(am2I3
Se(w)~e (77, ()

where
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comes from certain difficulties in the numerical simulation of Section VI contains the asymptotic form of high-frequency

the high-frequency spectra which apparently have not beespectra of the potentiad(r) for generah including the spec-

sufficiently appreciated. trum of the velocity autocorrelation function of a tagged par-
The classical spectru8-(w) can, in principle, be calcu- ticle. In this section | also determine precisely in which sense

lated from an equilibrium molecular dynami@éD) simula-  the collisions seen in the high-frequency spectra are “almost

tion. However, there are several obstacles to reliably deterentral.” | continue in Sec. VII with a qualitative discussion

mine the spectra in the high-frequency domain. First, sincef high-frequency spectra in fluids. After a brief remark on

the numerical accuracy is usually limited to 16 orders ofgeneral potentials in Sec. VIII, | turn to question 4 in Sec.

magnitude, the high-frequency spectral range often is notX. After presenting a conjecture for the upper bound on

accessible. Second, the high-frequency domain displays exponentv, the paper closes in Sec. X with an estimate

considerable and unexpected dependence on the nidfer of the frequency range where quantum effects become

particles used in the simulatidi8]. One can show that for important.

any N there is a frequencwy so that the MD spectrum is

qualitatively in error foro= wy even for infinite simulation || AVERAGES AND CORRELATIONS IN DILUTE GASES

time. The most serious limitation of a MD simulation of the

spectra, however, stems from the finite simulation time. Consider a tagged particle in a dilute gas of dengityVe

High-frequency spectra are generated by almost central cofre interested in observables like the force and potential en-

lisions of high energy. The highest enefy,.in the course  €rgy with the neighbors. The latter is given by

of a simulation sets an upper limi,,,, beyond which the

MD spectra are qualitatively in error. Sinég,,, increases 1y — B

only logarithmically with simulation time, the simulation Vit ;l Vi V), ©

time becomes prohibitively large for the spectral regions of

interest. These matters are more fully discussed in [B¢f. ~ where rj;=r;—r;. We search to express quantities like
In this paper | present a method to calculate the asympéV;(t+ 7)V;(t)) by the dynamics of the two-body collisions.

totics of high-frequency spectra. The procedure is quite gen- V,(t) is an example of a simple but important class of

eral and applicable to all potentials which can be analyticallyobservables. A  relative  binary  observableA,

continued into a part of the compleéxplane. From a practi- = A(t;,t,, ...) associated with a tagged partiéles a sum

cal standpoint the Lennard-Jones potential of local observables

o 12 o 6
7 (7]
is of much greater interest than the exponential potential
studied by Landau and Teller. The spectra of this potenti
will be published elsewherg8]. As a relatively simple ex-
ample and a prerequisite to the Lennard-Jones potential

present in this paper a detailed calculation of spectra of gas
interacting with the repulsive potential

V| 3(r)=consX

(4) Aizz AIoc: (7)

IEall

a here eachA|oc=A,oc(t1,-t2, e )=A,oc(r(tl),r(t.2), oY)
depends only on the relative distancer;; of a pair of par-

ticles at timed,,t,, ... . By considering limits this includes
possible dependence on relative velocities. We also require
atA,. tends to zero for large separation. Since all particles

are identical, we will often omit the indeix

A Other simple examples of local observables are

V(r)=—, n=2 (5

r 8(rij(t)—r) 8

The valuen=2, while artificial, is interesting, since in this g

case some spectra can be calculated analytically for all fre-

guencies. Fon>2 we find simple analytical results only in eV 1, g=(kgT) 1, 9

the high-frequency region. In this way we obtain the true

asymptotic expression for spectra for potentials of this typeand products of these at different times. The time average of
This will answer the first three questions above for thesehe first one leads to the radial distribution functigr) (see
potentials. Sec. lI1 Q). By the same method one can show that the sec-

~ The paper is organized as follows. In Sec. Il | present &nd one leads to the second virial coefficiy. Further
simple expression for correlation functions in dilute gasesexamples are

composed of spherical molecules. This expression is the

classical limit of a well known quantum mechanical formula, (Vi (t+ 7) = Vi (1) v (1) (10)
and reduces the calculation of correlation functions to the

two-body problem. Section Il discusses a few simple andyy

well known applications. Section IV contains results for the

special cas@=2 where many spectra can be calculated ana- 2
lytically by elementary methods. A discussion of the general EOR (11
procedure to calculate asymptotic spectra follows in Sec. V. rij(t)
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wherel is the angular momentum in the two-body problem.and 8= (kgT) " . Inserting, we obtain the following expres-
The first one is essentially the velocity autocorrelation func-sion for the average of a relative observal@el1]

tion of a tagged particle. It is shown in Sec. Il C that the
second one leads to a well known expressioBgin terms

of the scattering angle. As a final example consider the
collision-induced dipole moment of a pair of dissimilar rare

<A>=47Tp(27'r,u,kBT)_3/2f dEe—ﬁEf 27l dl
0 0

gas atomg9]. These atoms do not possess a permanent di- °°
pole moment, but a transient moment X _xdTAloc(THl'THb ) 17
p(ris(0),E1) (12) On the right-hand side th&,, . refer to the unique solution of
the two-body problem at definite ener§yand angular mo-

appears during a collision due to the distortion of the elec-
o . mentuml.
tron distribution. Apparentlyw depends only on relative

” X . i We have derived this equation for purely repulsive poten-
ﬁ;?)?gtles(dlstance and velocijyand vanishes between col- tials so that there are no bound states. If the potential is not

. . L . . urely repulsive, certain values Bfandl admit several pos-
I will now give a derivation of the basic expression Eq. purely rep P

(17) used extensively throughout the rest of the paper Fo?ible trajectories. FOE>0, at most one of these is a scatter-
the moment we alsoyassun?e that the potential isp Erei re'flg state, the others corresponding to periodic motiorthe
pulsive P PUrely T&dial coordinate Let{T;(E,l)} be the collection of periods

In a dilute gas, subsequent collisions of the tagged particllcor a given pair £,1) whereT=c> corresponds to scattering.

are random and uncorrelated events, widely separated ﬁr'lhen the generalization of E{L7) to arbitrary potentials is

time. SinceA,.(t) is nonzero only for particles closely to- given by
gether, we expect . ]
A)=4mp(2muk T)‘3’2f dE e‘BEf 27l dl
(A=Z(Ar00), (13 (A : }
whereZ is the number of collisions per unit time ak4,,.) xS jTi(Ev')dT Aoty r4, ). (19
is an average over all collisions. This should be correct pro- T Jo oc

vided the time span covered by thes small versus the time

teon between collisions. The proof is somewhat lengthy and relegated to Appendix A.
Since a collision involves only two particles interacting  The quantum analog of this relation is probably better

with a spherically symmetric potential, a collision is com- known than its classical limit. It is simply

pletely characterized by the following quantities: The veloc-

ity v of the center of gravity, the angular momentum vector

| which also determines the plane of motion, the endtdy

the center of mass frame, and the tim&y definition, Ao

is independent ob and the direction of. For a given col- i 3 representation whete andL are simultaneously diag-
lision, characterized b¥ andl, the average is given by the gng|. As in the classical casé,must vanish for widely sepa-
time average rated particles and depend only on relative coordinates and
velocities. The trace over the center of mass can be per-
(Ago)e = fx d7 AT+t 7+, .. .). (14) formgd and cancels .th'e correspon_ding factqr_ in the pgrtition
’ —w function Z. The remaining term iiZ is the partition function
of a single structureless particle with reduced mass

(A)= %Tr e PHA (19

Therefore we may write

/LkBT 3/2

Z=V
2ah?

(20)

<A>=f:d|5f:d|2(|z,|)

w An additional factor ofN is generated by taking the trace
XJ d7 Ape(7+ty, 7+, .00, (159  over all particles.

o For operators which commute with the angular momen-
tum operatolL, a complete orthonormal s¢#,,} of eigen-
functions toH andL can be chosen and we obtain the quan-
tum analog of Eq(18),

whereZ(E,l) is the number density of collisions with energy
E and angular momenturhper unit time. This quantity is
well known from the kinetic theory of gas¢$0]. We have

2\ 32
2(EN)=4mp(2mukeT) e F2ml, (10 W=| 2] S 2D Al @
MK nl
wherep is the densityu=m/2 the reduced massthe an-

gular momentumE the energy in the center of mass frame, Formally, the classical limit is obtained by the replacements
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I1l. SOME SIMPLE APPLICATIONS
> (2|+1)_>ﬁ—2f 2l dl (22)

Before we proceed to the spectra, let us apply the results
of Sec. Il to a few simple and well known problems. This
D e—ﬁEn<'>n_>h—1f dEe—BEJ dt, (23) section con_tain_s no new material and only serves to gain
n some practice in applying Eq18) and to introduce some
notation. It may be skipped by most readers.
where(-) denotes a quantum average in state
We wish to apply the above result to correlations of rela-
tive observable®\ and B. Suppose for ease of notation that ]
both depend only on the distanaggo the reference particle, L€t us first show that
possibly at different times,

A. Radial distribution function

<2 5(rij(t)—r)>:4wr2peﬁvm. (31)
J
A=2) Aelr)), (24
: To prove it note that the motion is confined to a plane. In this
plane we may decompose the radius vecter;;=r;—r; as
B=2) Bioc(10). (25
K ( cosé(t) ) 32
r(ct)y=r(t)n(t), n()=| . ,
In the product =r(On() ® siné(t)

wheren is a two-dimensional unit vector. The equations of
AB:; AIOC(rj)Bloc(rj)+j;k AIOC(rj)BIOC(rk) (26) motion forr(t) and g(t) are

the second term on the right is of ordet and, up to higher M-y 2 _
order, its average is equal {&)(B). We obtain STV + ot E (33
ur
<AB>_<A><B>:<; Aloc(rj)BIoc(rj)>- (27  and
: o . . . I
The sum on the right-hand side is again a relative observable. 0=—, (34)
We apply Eq.(18) and obtain mr
(A(1)B(0))—(A)(B) where
=47Tp(2kaT)*3’2f mde e*ﬁEfo 27l dl M:g (35)
x> fTi(E’l)d,, Ao 74+ 1)Byoe( 7). (2g) s the reduced mass amds the angular momentum.
T Jo In the time integrals
In the rest of this paper we will be mainly concerned with Ti(E.])
purely repulsive potentials. In this case we obtain for the > f dto(rij(t)—r) (36)
spectrum boJo
oo . introducer;; as a new variable. Since every point is trans-
SA(w)=f dt €“T(A(t)A(0))—(A)?] versed twice, this becomes
=4mp(2mukgT) 32 bi drj;
pzmikeT) 23 [Mory-n L, @37
” * R rij
xJ dE e*ﬁ’Ef 27l dl|Ag(w)]?, (29
0 0 wherer;;>0 anda; andb; are the two turning points for
where periodic motion(In the case of collisions the upper bound is

infinite.) This is equal to

Aroel @)= f T dtd (D (30 ) \/; 1
2

——=2\/3 —. 3
is the Fourier transform of,. on the trajectory character- fij (1) !
ized byE,I. 2u

E-V——r?
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providedr is located in one of the intervalsa(,b;) and 2mh 2\ 32

vanishes otherwise. This condition means that the argument gb(r):p( K T) > e PRy ()3, (45

of the square root must be non-negative. Hre "
Now we can perform the energy integration. Multiplying

by e #E and setting

where the sums run over the bound states.

12 dE C. Virial coefficient and scattering angle
E=V+ ﬂr72+xz, = 2dx (39 Consider the local observable
we obtain 2 .
Ajoc()= > =ulo(t). (46)
re(t)
R Ti(E)
fo dEe EI fo dté(rij(t)—r) After time and energy integration we find as previously
:4\/EJOCdX g BV BUPRu)r 2 px? f dE e FE dt—1
2Jo r(t)?
- - BV—B(1%12u)r 2 %
V2mukgTe e (40) :f (2D kg e AV A2 2gy
We multiply by 2771 and integrate over the angular momenta. 0
The right-hand side becomes (47)
(27 ke T) ¥ 2BV, (41) On the other hand, integrating the expression involvéhg

over time yields the sum of the changks for all periods.

This must be multiplied by #p(27ksT) 32 and proves the Comparing we find

assertion.

|2\/27T,u,kBTfmr ~26=BV(Ng=B(I%2u)1 2 4

B. Number of bound particles 0

It is sometimes interesting to decompose the total radial .
distribution functiong(r) into contributions from the bound :M”(BTI d(BE)e ? EI Aif. (48)
and scattering states separately. Setfrgl in Eq.(18) and
performing the sum over the finite periods only, we obtain,\IOW we subtract
the average number of bound particles for any given particle,

© a2 )
(nb>=47'rp(277,ukBT)_3/2 |2\/27T/.LkBTfor 2 e BU%2u)r dr:7T,LL|kBT, (49)

Xf dE efﬁEJ’ 27T|d|§i: T(E). (42 multiply by 27l dl, and integrate. The left-hand side be-
comes

The radial distribution functiomy,(r) due to the bound par-
ticles Only is obtained by replaCin@iTi by (ZWMkBT)3/22MkBTfoch(e—,BV(r)_ 1)dr (50)
0

2 V2u

T (43) and we obtain for the second virial coefficient

ro 12 2'
E-V——r" ”
2u 27rf r2(e” AV —1)dr
0

Integration is over thos&,l which render the square root

positive and admit a finite turning point to the right ofA =2172(27T,ukBT)_3/2J d(BE)e FE
detailed discussion is given elsewhé8d. Again, the quan-
tum mechanical counterparts are formally much simpler, o
xfo |2d|(2 Aia—w>. (51)
I
27Tﬁ2 3/2 .
<nb>_p(,ukBT) En: e/ (44) In particular, for purely repulsive potentials the sum contains
only one term and\ — 7 is equal to minus the scattering
and angle y. We obtain
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% We find
Zvrj r2(1—e AV)dr
O o] oo
f dEJ 27l dl|r %(w)|?
=2772(2kaT)—3/2f d(ﬁE)e—ﬁEf 12dIx(E,l),
0 0 o dz
=27‘r3,u,2/3_1j VorzKi(Jowrz) — (60
(52 1 z
which is equivalent to the expression in REE2]. and, setting= w7z,

— -2 0 0
IV. POTENTIAL V(r)=Ar J dEf 2l dl|r~2(w0) 2= 473 2B~ HKo(Var 7).
In this section we start with the calculation of the high- 0 0

frequency spectra. Gases with inverse square potentials are (62)
particularly simple and we do not need the general apparatysy potentials without a hard core let us define a “thermal
discussed in Sec. V. Many features of the spectra can bgq;,s” by
calculated analytically by elementary means.

From the equation of motion E€33), we obtain the turn- V(ry)=KkgT. (62
ing pointr,
At the distance =r;, the potential energy is just equal to the

rg:é At 2'_2 (53 thermal energy. In the present case we may replabg
a A=kgTr?,. 63
and write the equation of motion in the form
Using this notation we finally obtain for the spectrum of the
) r2 potential energy correlations on a tagged particle
r2=g? 1——2), (54)
r o0
f dt & Vi(H)Vi(0) = mkeT)?pr §,7Ko(Vw1).
whereg is the relative velocity at infinity and o (64)
E= %MQZ This relation is exact for allv in a dilute gas.

The example displays a typical feature of high-frequency
spectra: They always seem to decay slower than exponen-

is the energy. If the origin of time is defined by0)=0, the tially. In the example here, insertingq(x)~ \/x e X for

solution is large w7, the right-hand side becomes
r(t)=r2+g%>2 (55) -3 -
E(kBT)ZprtghT(wT)_1/4e_v‘°7. (65
A. Observabler™?
The simplest local observable is the potential itself. WeBelow we will discuss many more examples of spectra of
have this type. The first authors who discovered a spectrum

) ~e~ (@D with »=2/3 seem to be Landau and Tel[dq for
r*2(w)zf dt &ty ~2(t) = T ewroly. (56  the exponential po.tentia*”a. _
— o9 Let us replace in Eqg. (59) by Eq. (63). Then we obtain
the suggestive form
With A= {uA/2 we find after some algebra

.
=40 (66)

o o dz
f|r*2(w)|22w|d|=2w3ﬂzf e PME— (57) Uth
0 1

where
To integrate over the energy we use

kgT
0 Uth= 2_ (67)
f e FET2MIEJE= g1 wrzK (Vw12),  (59) m
0

is the mean square thermal velocity along thexis (say.
whereK; is the modified Bessel function and the time con- Thereforer, which measures the duration of a collision, is

stantr is defined by proportional to the time it takes a thermal particle to travel its
own diameter. Very similar features will be found for the
=482 uA. (59 other potentials.

031204-6



CORRELATION FUNCTIONS IN CLASSICAL GASES K. .. PHYSICAL REVIEW E 65 031204

One further point is noteworthy. Checking the calculationit* (if necessary we can avoid the singularity itself by some
one verifies that for a givem the main contribution to the small indentation in the contourThen we obtain
spectrum comes from almost central collisiohs-Q) with
energies near

. ei ot

r‘p(w)ze“”‘*f

dt———.
—oo tr“’(t+it*) (72

J
— (BE+2w\/E)=0, 68 . L . :
(?E(B wME) (68) If some information is available about the behaviorr ¢f)

. near the singularity, the integral can be processed further.
I.€., near The important point to note is that the asymptotic behavior is
dominated by the singularity in the upper half plane with the
BE~ Vor (69) smallest imaginary patt [1].
2 r(t) satisfies the equation of motion, E@3),

: . . dr 2 | 12
B. Velocity autocorrelation function o+ \/: E—V(r)— (73
dt o 2ur?

A complete analytic calculation is possible but somewhat

involved. Since the problem is discussed again in Sec. VIF the whole d in of Iticity, A dina to a th
for generaln, | only present the result. In the high-frequencyIn € whole domain ot analyticity. According 1o a theorem

region the spectrum of the velocity fluctuations of a taggeoo_f Cauc_h_y,r(t) is an_alytic every_where except po_ssibly at
particle is given by singularities of the right-hand side. These are givenrby

=0 (for I #0), the singularities o¥(r), and the zeros of the

o ot . expression in the square root. At these zeros, howe{grijs
f_mdt e“i(ri(t)-ri(0)) analytic. Indeed, near such a pomnt the differential equa-
tion simplifies to
kgT —
~32m2pr, \| —(w7) M%7 (70 dr
TP N, (@) (70 ¢~ constyr—r. (74)

Comparing with the spectrum of the potential we observ o o .

: : .. The solution isr(t)=r,+constxt“ which is analytic at ;.
that both display the same subexponential decay and d|ffe[ 1 . : - 1
only in the algebraic prefactors. We will see that this is §Ne conclude, that the possible singularities are located at

general phenomenon. The spectra of generic local observ:—0 and at_ the smgljllarlt_les or(r). . . .
In the simplest situatio’(r) has a single singularity at

ables belonging to the same potential have the s@megex- _ h P o i bel h
ponential decay. They differ only in prefactors that usually r=0. The casa/(r)—Ar IS St.Ud'ed in detail below. T'e
Lennard-Jones potential, E@), is another example. It will

vary less rapidly withw.
y pidly be discussed in a future pad&. In such cased; is given

by the imaginary part of
V. GENERAL REMARKS ON ASYMPTOTIC SPECTRA

According to Eq.(29) the first step in calculating spectra \/; 0 dr
is to estimate the Fourier transforA( ) on individual tra- Efro 2 ' (79
jectories. In a second step these are averaged over energies \/E—V(r)— 2
and angular momenta. 21
To have something concrete in mind, {r) be some
inverse power of the distance and consider wherer is the turning point.
= gt VI. POTENTIAL V(r)=Ar"
r*p(w)zf dt , (77
- rP(t) For simplicity we assuma>2. A few remarks about the

casen<2 are made in Sec. VIG. As previously, we often

where the exponerti is positive.(We will see later in Sec. replace the factoA by the “thermal radius” defined by
VI H that the observables™P are in fact representative for a

very large class of observablgs. A=KkgTr,. (76)
It is well known, that the asymptotics of the Fourier trans-

form is governed by the singularity structure of the integrandThe value oft* is given by

in the complex plane. Suppose thdt), as a function of the

complex variable, can be analytically continued into some Mo(To dr

strip containing the real axis. Lét be the minimum of the t*(E.D= \/;fo > (77
imaginary parts of the singularities oft) in the upper half \/Ar‘“+ I—r‘Z—E

plane so that(t) is analytic in the strip 8.Im(t)<t*. Since 2u

r~P(t) is even int we may assume>>0. We can move the
contour of integration to a parallel to the real axis throughwhere the turning pointy=rq(E,l) is given by
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o |2 _2 Before we proceed let us ask under what conditions this
Arg "+ Zro —E=0. (78)  result is expected to be valid. We expect the error to be small
if the terms neglected in the equation of motion are small

_ o o versus the terms retained. This means
A. Fourier transform on individual trajectories

Our first task is to evaluate e - 88)
B (ot r " 2ur
dt———— (79 S o (N L
J:w PP(t+it*) Insertingr ~ct* and defining
for large positivew. In the vicinity of the singularity where Tth:ri‘ (89)
r~0, the equation of motion simplifies to Uth
L. we find after some algebra the conditions
Er2+Ar—”~o. (80) s
O TS 5 (ﬁE)(1/2)+(l/n),
(Here we need the assumptiob-2.) We insert the ansatz
. (12)+[2/(n-2)]
F(t)~ £c(t—it*), (81) n+2( 12 "
W TH> 5 m (90
where¢ is some root of unityc>0, and the complex plane #¥s 1 Tth
has a cut fronit* to ic. We find We will verify later that these conditions are indeed satisfied
) in the asymptotic region. The next step is to evaluate the
_ double integral
A n+2’ (82)
f 27l dlf dE e AE-2(ED (91)
2en_2A. 0 0
cc T N=—N\""%, (83
H for large w.
£rn=—1. (84)
B. Central collisions
Therefore the singularity at=0 is an algebraic branch |t || be argued in Sec. VI E that almost central collisions
point. In the asymptotic region we may insert the solutionmake the dominant contribution to the spectra. In particular,
(81) and obtain forp>0 they determine the exponential factor in the spectra. In order
ot ot to introduce some notation, let us consider purely central
® 4t e e[ e'—wdt collisions in this section.
—w rP(tHit*) ¢ SN We must estimate the integral
—gPeP 2m lim/2)px Ap—1 J dE e AE-20 " (E0) (92)
I'(\p) 0

(89  for large w. Using Laplace’s method the integral is domi-

Here the contour has been deformed to a loop along thgated by the energl = E(«) satisfying

imaginary axis cut from infinity to O and back to infinity on 9
the other side of the cut. a_E[BE+2wt*(E’O)]:O' (93
The right-hand side must be real for all Therefore

Forl=0, t* can be calculated,

fze(iW/Z))\ (86)
: 4D . 1 1
which also satisfieg""“= —1. We obtain for the spectrum J7 r R
on a single trajectory in the asymptotic region t*(E,0) = > =71 ﬁ(ﬁE)’(l’z)’(l’”), (94)
27 PP 1 g ot* (E]) 87) (n)

r—P ~
) e | e
where agair,= (kgT/2u) "' Let
Forl=0 andn—2 the right-hand side should tend to the
corresponding results far=2. Using Sec. IV this is checked
easily.

3 1)1

(99
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and define a time constant

r
r=co—2, (96)
Uth
where
1
F(i)
co=m(1—v) V——0t (97)

e
T —

n
Up to the numerical constary, 7 is the time it takes a
thermal particle to travel its own diameter.

From Eq.(93) we find that the dominant energies for col-
lisions with frequencyw are close to

BE(w)=(1=-v)(wT)" (98)
and that
fwdE e—,BE—Zw t* (E,0)
0
~kgTV2mv(1—v)(wr)"2e (D" (99)
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t*(E,|) = \/gAllnE(UZ)(l/n)S(n/Z)Jrl

Xfl du
oJu "—1+(s"-1)(u"?-1)

— \/gAl/nE(llz)(lln)f(s)'

(104)
We shall later need
1 1
F(fﬁ
f(l):\/;—l,
t[3)
n
o7
L T (3 1 (1)
fr(1)= N I 5—=|T o). (105

The functionf(s) is monotonically increasing fos>1. In-
deed, denoting the expression under the square roat ke

. . . . . . _have
It is also interesting to estimate the width of energies

around the dominant enerdy(w) which contribute to the
spectrum. This is given by

([BE=BE(0)1)~¥(1=v)(w1)".

The width increases witho, but the relative width([E
—E(w)]?)/E(w)? decreases- v(1—v) wr) "

(100

C. Double integral for large frequencies

In this section we evaluate the double inted@l) in the
high-frequency domain. In E477) we setr =ryu and obtain

) 2 \/; 0

J'l du
X .
0 12
\/u‘”—1+ mrg_z(u‘z—l)
(101
Defining s by
A 1/n
ro=(E> S (102
we have
|2
ZM—ArS*Z:s“—l (103)

and we writet* in the form

n
~+1

5 [u"—1

1du

f/(s)zsnlszaTIZ
n

+(s"=1)(u?-1)]— Es“(u—z—l)]. (106)

2

Sinceu™"—1>u"“—1 the braces are larger than

n n
(u2-1) 5+1 s”—is“ =(u?-1)s" (107
which shows that’(s)>0.
Using
[2=2uAPPEL-@CN)(2_g27m)  g>1 (108

we change integration ovéiinto integration overs with
21 dl=2uA?PEL-CN[ 25— (2—n)st "]ds (109

and obtain

fw27rl dl e~ 20t*(E)
0

:ZWMAZIHEli(zm)fxds[Zs—(z_n)sl’”]e’z‘”t*(E’s)
1
(110

and
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fwdEJOCZwIdIe‘ﬁE‘Z‘"t*(E")
0 0
:2WA2/nfds(25—(2—n)sl‘“)
X f “dE Bl (@M BE-20t* (E9), (112
0

Using Appendix B we can estimate the integral otefor
large w. In the notation of Appendix B we have

f(s)
V=0T

f(l)’ n= _ﬁ (112)

and the integral oveE is asymptotically for largeo

BEM2\27mp(1—v)(1—v) 7y l1D* ey (113

We obtain

fwdEfOCZWI dl e~ FE 208" E)
0 0

~2mpB A BAY 2w v(1-v)(1-v)”
><Lmds(ZS—(2—n)sl‘”)y”[(l’z)“’]e‘y".
(114
Sincef(s) is monotonically increasing is, for large w the

dominant contribution to the integral comes froga-1.
Therefore the right-hand side is asymptotically

~2mpB 2(BA)Y"n\2mr(1—v)(1— )7

% Fds w2+ 7] gy
1

~2muB 2(BA)Y"n2mr(1—v)(1—v)"

X (o) (V2 7] des g (@7 {1+t (1)/f(D))(s~ 1)}
1

(115
and we obtain finally
FdE quﬂ dl g FE- 20T (BN
0 0
n
NZW/Lﬁ_Z(,BA)Z/n; V2av(l—v) (1—v)”
><f(_1)(wT)V[—(l/Z)+ 7 g (wn)" (116)
f'(1)
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D. The asymptotic spectra

Collecting terms we write our result for the spectra of the
observable

riP=> ! (117

Frh ()

in the asymptotic region in the form

s<w>:f_ldte““‘<rrp<t>rrp<0>>~a<wr>ffe-<w>”.

(118
The exponents ando are given by
__an 119
YT 3n+2 (119
and
4p 5n+8
5 (120

7T ht2 3n+2°

The time constant is defined in Eq(96). The amplitudea
has the form

— 3 —2p

a=a(pry) 7ri, (121

where« is a dimensionless constant. The dimensions of the
other terms are obvioug:r3, corresponds to a dimensionless
volume fraction,r corresponds to the integration over time
in S(w), and r{hz” stems from the correlation
(r(0)"Pr(t)"P) considerede is given by

B ( 27 )2 oD
a=41m g —F(p)\) [(n+2)co] >
X\2v(1—v) (1—p)t~ @M

1 1 1
r(—+— r(l__)
2 n n

r 3 1 r 1
2 n/ \n
N\ andc, are defined in Eqs(82) and (97), respectively. In

particular, forn=p=2 we recover the previous results in
Sec. IV with a=7%//2.

(122

E. Dominant energy, angular momentum, and deflection angle
seen at frequencyw

At this point let us summarize what we have learned
about the nature of the collisions seen at frequendan the
spectra. In Sec. VIB it was shown that the energy of the
collisions seen at frequency is given by Eq.(98). The
higher the frequency, the more energetic the collisions that
contribute to a spectrum at this frequency.

Concerning the angular momentum, we obtain from Eq.
(108
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2 where the constant is given by
———— =(BE)Y @M Z(1-5 "), (123
2u kgT ra, P 3n+2 7

yX:mCOtﬁ' (131)

For high frequency is close to 1. More precisely, it follows

from Eq. (119 thats—1 is exponentially distributed and  The deflection angle of the collisions seen in the spectra at
large frequencies indeed tendso
f(1) (07)" (124) Let us finally check the condition®0). Inserting BE(w)
v /(1) o from Eg. (98), the first condition amounts to>1y[(1/2)
+(1/n)] which is satisfied. From Eg125 it follows that
This implies, in conjunction with Eq98), that the dominant the second condition is also amply satisfied.

angular momenta seen at frequeneysatisfy

(s—1)~

2 F. Application: Velocity autocorrelation function
<—2> ~vy(wT)” 2N, (125 As a simple application let us calculate the spectrum of
2ukpT g, the velocity fluctuations of a tagged particle in the high-

frequency domain. We must first show that the angular ve-

city can be neglected versus the radial velocityndeed,
rom r=r n we obtain using Eq(34)

where the constant ig=(n/v)[f(1)/f'(1)](1—»)1~ M,
The higher the frequency, the smaller the angular moment
of the collisions contributing to a spectrum.

The fact that? is so small in the asymptotic region sug- o |
gests a more transparent albeit less rigorous way to estimate r=rn+—n, (132
the double integral. Expandirtg (E,l) aboutl =0 and keep- ur

ing only the first two terms, the double integral becomes ~ . S
wheren is a unit vector normal t;n. The asymptotics is

x e [ 2t (E0) 20(at* D) (E0) 12 determined by the region near the singularity &0 as ex-
fo dEe” fo 2mldle =vt =07 ee . plained in Sec. VIA. The angular velocity can be neglected
(126 provided

This suggests thdf is distributed exponentially with |'r(t)|> (133
- » plr(t)]
<|2>~(2wm(E(w),0) (127 in that region. This amounts to
. o _ _ conse | [t—it* |12, (134
which indeed coincides with Eq125). The double integral
then becomes asymptotically Since the relevant are small and +2\=(n—2)/(n+2)
B =0, this is satisfied.
7T<|2>f dE e BE-20t*(E0)— kg T(12) V2 mv(1— ) From Sec. VI A we obtain further
0
4 . 2A -n/2
X(w7)"?e" (00" (128 A il (135

which coincides with Eq(116) as it should.

We have stated repeatedly that the dominant collisions fo
high frequency are almost central. Now we can make thi
more precise. After some algebra one obtains for the angle
deflection y of a collision with angular momenturh and n2—14n—16

near the singular point. This implies that up to a constant

actor the spectrum af is the same as af 2. In particular
c;lpe exponentr is given by

E, -~ -
energy Tvat= (01 2)(3n+2) (139
2
== / 2l . (BE)~(12)+(1m) g(n/2)~1 Since for particla in a collision
mkgT iy . .
mr;= pur, (137)
1 du
X J ) (129  we obtain the spectrum of the velocity autocorrelation func-
_ _ Y
01-u"+(s"-1)(1-u?) tion in the high-frequency region
wheres has the same meaning as previously. Letrgl o o _
on the right-hand side and using Ed88) and (125 we f dte“ri(t)-r;(0))
obtain after a short calculation -
(m= 0D~y (@), (130 ~ ar Vi T(p 1) (w7)%ate” (7", (138)
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wherea, 55 is given bya for p=n/2. pole atr =i and, depending on the potential, there may be a
An alternative calculation could proceed as follows: In thet” with r(t’)=i and 0<Im(t’)<t*. The arguments of the
high-frequency domain the equation of motion for tlile  preceding sections can be applied with little change to this

particle situation provided* is replaced by Im{(’) with

) ' dr
mri=— >, n;V'(rjj) (139 ’:\/E r
iZi ! ! t ZJrO |2 . (145

_ . y—2
can again be replaced by the radial part \/E vin) 2 Mr
. 1 In the high-energy region we have
mi=—> V'(r)=nAY, ——. (140 Jgh-energy reg
7 g Im(t')~E "2, (146

Utilizing Eq. (118 for p=n-+1 we obtain This leads to the exponent=2/3 (see the discussion in Sec.

1X).

f dt €<r;(t)-r;(0)) Another possibility is thatA(t) is regular atit* even
o thoughV(r(t)) is singular there. This happens, for example,
n2A2 ) for n=2 and the observable "®*. This is one of the ex-
~— a(p rfh) rr{hz"’z(wr)"e*(“”) , ception.al cases where the s_pectrum decays exponentially.
m Such situations must be studied separately.
(141) In the generic case the relevant singularityAifr (t)) is

the one inherited fromV/(r). In this case almost all of the
wherea and o must be evaluated fgg=n+1. A short cal- work has been done. The asymptotic evaluation of the double
culation verifies that the two expressions for the velocityintegral in Sec. VIC is independent of the observable. It

autocorrelation function are equivalent. remains to determine the spectrum in the vicinity of the sin-
gularity atr=0. This has been done in Sec. VIA forP.
G. Potentials with n<2 Suppose first that
Up to now we have always assumeg 2. Softer poten- A(r)=r"PB(r), (147

tials withn<2 can also be studied, but off central collisions

play an increasingly important role. This complicates thewherep>0 andB(0) is finite and nonzero. Then, because
analysis and somewhat modifies the preexponential factothe spectrum depends only on the behavioA¢f) nearr
For example, in the case of the Coulomb potential one car=0, asymptotically

show that the high-frequency spectra are proportional to

A(w)=B(0) r P(w). (148
(07)7ce (47, (142 _ _
The spectrum of\(r) is proportional to the spectrum of P
where the exponent is given by of Sec. VID.
Now let
20p—37
Te= OID15 ' (143 A(r)=rB(r), (149

whereq>0 andB(0) is finite and nonzero. In the integration

along the loop mentioned in Sec. VIA, we have

=cé™|s|* on the right edge of the cut and=c e~ '™|s|*

20p—39 on the left edge. Therefore the integral over the loop be-
5 (1449  comes

This exponent is almost equal to the previausvhen one
formally putsn=1 in Eq.(120). This would predict

o=

i f clel T g g @S5 | J cle 17 g g 0Sqg

H. Other binary observables 0 0

For definiteness we have concentrated on the observables
r ~P(t). However, for most other local observablgér) the
results are very similar. _ _ _and we obtain asymptotically

As usual, the spectrum is dominated by the singularity of
A(r(t)) with the smallest imaginary part in the upper half a(,)~—B(0)2 cdsin(mg\) T(qA+1) @ L~ o™ ED,
plane. Several possibilities can arise. (151)

It may happen that(r(t)) becomes singular at some
pointr’ even before the singularity i¥(r) is encountered. Using the relationl'(—x)I"(1+Xx)= — «/sin(mX), we note
Consider for example the observablei?) 1. This has a that this is just the analytic continuation of E448) to nega-

=—2c9sin(mg\) (A +1) 0~ N1 (150
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tive p [compare Eq(87)]. Equation(151) is correct only if ~ This tends to zero for largesr and demonstrates that the
g\ is not an integer. Otherwise the singularity of at r collisions which contribute to the high-frequency spectra are
=0 is of lower order and must be studied separately. almost central even in fluids.

Finally, if A(0) is finite and nonzero, we must replace  Now we can return to the argument that collisions in lig-
A(r) by A(r)—A(0) in order to obtain an observable which uids are not necessarily independent. Of all the collisions in
is singular atr =0. a group(a “hot spot”) there is rarely a collision sufficiently

For small values ofp and g, the convergence to the central to satisfy Eqs(130 or (155 and to be seen in the
asymptotic expressions above is quite slow. To see this angpectra. Even if one of these collisions is central enough, the
to obtain an expression valid for a larger rangewgfcon-  preceding or subsequent collisions in this group have an
sider for example the observabir)=e °'® wherebis  overwhelmingly small probability to make a second central
some inverse length. Inserting the singular solutionscollision. Itis this stringent condition on centrality that guar-

ce™'™|s|* we obtain antees that the collisions seen in the high-frequency spectra
are independent, even in a dense liquid.
(e P (w)~f e*wt*, (152 The spectra are dominated by a small region near the
turning point where the particle spends only a very short
where time. During this time the configuration of the environment
is practically unchanged. Therefore, we again have indepen-
fei fwds e,ws(e,bceimsx_e,bce—msk) dent spattering even_ts in a time-independent potential. The
0 potential, however, differs in several aspects from the gas. It
is different in every collision; it is in general not spherically
—i fwds o ws—becosm s symmetrical, and it has no well defined limit for large
0 The high-frequency spectra are determined by the trajec-
tories of a pair of nearby particles in the vicinity of the turn-
X (g~beisinmh s*_ gbcisinmh sty ing point. The number density of such a pair at distanaad
. with velocitiesv,v, is given by
— — wS—bc cosmN)st o ; A\
=2 ase 7 sinbesin(m\)s'] PO e(v1)e(v;), (156

(153  whereg(v) is the Maxwell velocity distribution. The trajec-

_ tories are determined by Newtons equations with initial con-
For large w this tends to Eq.(151) for q=1 and B(0)  ditions

=—b with a relative errorO(w) *. The same method can
be used to obtain approximations for most other observables r,(0)=0, }1=Ul, (157
in the high-frequency domain.
r(0)=r, r,=v,. (158
VIl. DENSE LIQUIDS
o ) . Suppose for a moment that the potentials in the fluid and
In dense liquids the low-frequency spectra are quite dify, the gas are identical. Then, with the same initial condi-

ferent from their gaseous counterparts. At high-frequencyions, the trajectories are also identical. This suggests for the

however, the situation greatly simplifies. As in gases, th&aig of the high-frequency spectra in the fluid and in the gas
high-frequency spectra are due to rare binary collisions Wltf[6’4]

high energy.
It has been argued that these collisions are not indepen- Su(w)  pu gn(re)
dent but occur in group$]. While this is true, we have seen Syad @) = e Gead o)’ (159
a gasdga

previously that the collisions dominating the high-frequency
spectra are almost central. According to ELBO0) the deflec-  \wherer o is the turning point.
tion angle y of the collisions seen in the high-frequency  |n the high-frequency domain the force from the environ-
spectra tends ta. An alternative quantity to gauge centrality ment is very small compared to the force from the direct
is the impact parameter potentialV(r). This suggests that E¢L59) might be exact at
the asymptotic limit. This, however, is not true. It turns out
b= | (154 that a small and bounded perturbation of the potential gen-
V2uE’ erates an additional factor which varies slowly with the fre-
quency[8]. In any case, the preceding arguments suggest
A dimensionless measure for centrality is the expectatiorthat the exponential factee™ (7" is also present in dense
value of (®/ry)% From Eq. (125 we obtain in the liquids.
asymptotic region

VIIl. OTHER POTENTIALS

b2
<—2> ~ 11/ (wr)~ @n+A/En+2), (155 The method used in this paper can be applied to many
I'th v other potentials. Essentially the only restriction is that the

031204-13



MAX TEUBNER PHYSICAL REVIEW E 65 031204

potential can be analytically continued into the comptex A more qualitative argument for potentials with a singu-

plane. This rules out potentials with hard core like the harddarity on the real axis runs as follows. L¥{r) be singular at

sphere potential. In a future pap] various perturbations r=0 and expand/ into a Laurent series

of V(r)=Ar " will be studied as well as potentials with

inaccessible regions._The qualitative result i; similar: In the V(r)~ 2 ar " (167

high-frequency domain the spectra are dominated by almost A>0

central collisions with high energy. Up to a prefactor which

usually varies less rapidly witl, generic high frequency Wwith a,=0 for sufficiently largen. For collisions with higher

spectra behave as and higher energy, steeper and steeper portions of the poten-
tial are probed. This roughly corresponds to a potential

~ g~ Min{gE+ o t* (E)} (160) ~r~" wheren increases with the collision energy. Taking

n—oo in Eq. (119 leads tov=2/3. This suggests that the

wheret* is that singularity ofV(r(t)) in the upper-halft ~ exponentv is always equal to its upper limit for potentials

plane closest to the real axis and the minimum is ovewhich grow stronger than any power at their singularity.

E>O0. Consider now potentials with an inaccessible region like
V(r)=(r—a) ". With regard to central collisions, this po-
IX. UNIVERSAL UPPER BOUND ON EXPONENT » tential behaves like ™" with a trivial shift of the origin.

Since the exponential factors are determined by the central
It seems that for all potentials the generic spectra ulticollisions, they are identical.

mately decay slower than exponentigyg]. In fact, the ul- Suppose next tha¥(r) is analytic and bounded on the
timate decay seems to be not faster thae ©°"*“"", The real axis and that the relevant singularity is at a finite pojnt
inequality in the complex plane. Thetf is given by the imaginary part
of
2
Vs 3 (161

rs dr
\/Ef — (168
. 2Jo JE-V(1)
follows from Eq.(160), providedt* (E) decays for large en-

ergies at least as fast & V2. | present a few arguments in The problem is simple if the potential is finite &t. In this

favor of the latter conjecture. case we have* ~E 2 for large E which again impliesv
Consider first a potentidl(r) with a single singular point =2/3.

atr=0 where it diverges to infinity. Every decent potential If the potential is infinite atr., the situation is not so

of this kind satisfies for sufficiently smail transparent. For simplicity suppose that the singularity is at
, iXg and thatV(ix) is real for 0<x<xs. Suppose also that
V*(r)>0. (162 v(ix) and[InV/(ix)]" are monotonically increasing to infinity
| for x—Xs. The imaginary part of
n
fixs dx ,fxs dx (169
r dr | T
t*(E)= \/Ef —— (163 o VE-V(x) Jo JE-V(ix)
2Jo W(r)-E
is given by
wherer is the turning point withV(ry) =E, we introduce
1 [x dx
V(r)—E=V(r)—=V(rg)=(r—ro)V'(r 164 —J — (170
(r) (N =V(rg)=(r=ro)V'(ro) (164 JEJo \/W
and find the inequality - V(ixg)
ro where V(ixo)=E. We want to show that the integral is
t*(E)<\2u Vo (165  bounded away from 0 and infinity f&—oc. We do this by
- 0

constructing upper and lower bounds.

Since the integrand is 1, a lower bound to the integral is
Xe Which tends toxg. To construct an upper bound we use
the monotonicity of In V(ix)]". This implies

We employ the trivial inequalityfe’ V(r)]'<0 or V'(r)
+V(r)<0 and obtain

()< B \/g (168 INV(ixg) —INV(x)=[INV(ix)] (xe—x) (17D
or
Thi; proves the 'conjecture for this class of potentials. In V(ix) .
addition, if V(r) increases stronger than any power for — T 1INV (xe=x) (172
—0, it is easy to see that=2/3 in this case. V(iXe)
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Inserting we obtain for the integral the upper bound

jxedx(l_e—[ln V(iX)]’(xe—X))—1/2 (173)

0

which tends to a finite limit forx,—Xs. As a resultt*
~E Y2 for large E which implies agairv=2/3.
As an example consider the potential

V(r)=cosh ?r. (174

Similar to the exponential potential it permits an analytic

solution. Omitting physical constants, f&r>1 the solution
to

r2+cosh 2r=E (175
is given by
r(t)=sinh1( \/?sinr‘( \/E)t). (176)

The singular points are logarithmic branch points at

JE+1 1
VEt,==*In +(n+—7'ri, (177
" JVE-1 2
wheren is any integer. Here
e (179
2\E

for all E which impliesy=2/3. In conclusion, it seems that
for generic potential§where the relevant singularity is an
essential singularijythe exponent is equal to 2/3. Only if
the order of the relevant singularity is finite pole or an
algebraic branch poipt takes values smaller than 2/3.

X. QUANTUM MECHANICS

It is well known that for very high frequencies collisions

must be treated quantum mechanically. As a rule of thumb,

PHYSICAL REVIEW E 65 031204

- 2mh
® 2uksT

is the thermal de Broglie wavelength.

The second condition stems from central collisions in the
radial coordinate. | briefly sketch the results. A detailed dis-
cussion will be published elsewher&4].

Let {ye(r)} be the eigenfunctions of the scattering states
in the energy representation normalized according to

(181)

f:w’awa(y)dE:zwh Sx-y) (182

and let

C(E.E")=(¢elAlpe) (183

be the matrix elements of some operaforOne derives the
standard relations
f dte”"(A(t)A(O))zf dE € PE|C(E,E+hw)|?
— 0
(184)

and

fw dt €“YA(0)A(t))= Lw dE e P5|C(E,.E—tw)|?

:efﬁﬁwfx dt €“YA(1)A(0)),

(185

where the operatoh is in the Heisenberg representation and
0w>0.

In the classical limit the matrix elements must tend to the
Fourier coefficients of the corresponding classical observable
Aq(D), ie.,

C(E,E+hw)—>£c dt e “tA,(t). (186)

guantum mechanical effects can be neglected in dynamic

phenomena at equilibrium whenever

hw

kBT<1.

(179

An interesting by-product of the theory presented above is a
more precise location of the classical quantum boundary for

equilibrium correlations.

Consider first the diagonal matrix elements. Up to an un-
interesting factor from normalization, for operatars® the
diagonal C(E,E) depends on the single dimensionless pa-
rameter

I'th -
}\_B(BE)(:L/Z) (1/n). (187)

Two conditions must be met if the spectra can be treateffor n>2 the classical limit.—0 is identical to the high-
classically. One condition is that the angular momenta of th&nergy limit at fixed:. Therefore, for high-energy collisions,
dominant collisions are much greater tharUsing Eq.(125  the diagonal matrix elements take their classical values. In
this can be written as the off-diagonal matrix elements there appears the second

dimensionless parametéw/E. These matrix elements tend

N to their classical counterparts provided
28 o2my (0r) ", (180 parts p
rth A

P (189
where E ’
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The dominant energies seen in the spectra at frequerane = (27mkaT) 3 e P (2ukgT) o= p2/(4mkgT)
close toE(w) of Eq. (99). Inserting we obtain after some (P ¢(p2) = (2mmksT) (AG)

rearrangement the condition
Integration ovemps produces a factor (#mksT)%?, and the
result of integrating out the motion of the center of mass is

A

r—B<zwco(1—v)(m)*1+V, (189
th

(A)=p (2mukaT) 22| [ drdpe<acp), (A7)
wherec, is defined in Eq(97). For sufficiently low frequen-

cies both inequalitieg180) and (189 are satisfied which where

indicates classical behavior. When they fail quantum effects 5
become important. E— p—+V(r) (A8)
2u
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| thank Dirk Schwarzer for many stimulating discussions Now we make use of the fact that the problem is rotation-

and for providing data from his extensive numerical simula—aIIy Invariant and the motion s °°”f'9§2 to a plane. In the
tions. following we often omit the integrand™ #=A(r,p).

We write

APPENDIX A: PROOF OF EQ. (18) fj drdp=f f drdpf dL 6O(L—rxp). (A9)

Consider a relative binary observabAethat depends on . _
the position vectorr=r;—r, of two particles at times rotate the angular momentum vector into thaxis, and ob-

t;,t,, ... . By considering limits, this includes a possible tain for the right-hand side
dependence on relative velocities. "
Let the positions and momenta of the particles at some 47Tf f dr dpf dl125@)(| e—rxp), (A10)
0

initial time ty ber,r,,p;1,p2. Newton’s equations then de-
termine the value of the;(t) andp;(t) for all times in the
future and in the past. Inserting the values fert,,t,, ...
into A, the observable becomes a function of the initial val- *
uesr=r,—r, and 20=p;—p, which we denote byA(r,p). 47Tf f dr dpfo dl125((rxp))d((rXp)2) 81— (rxXp)s)
The average oA is an average of\(r,p) over the initial
ensemble.

For a dilute gas of density the probability density of the
initial ensemble is

wheree; is the unit vector in the direction. This is equal to

=4wf fdrdp((rxmg)za«rxp>1)5(<rxm2).

(A11)
p o(p)e(py) e V() dp,dp,dr, (Al)  The region of integration in the second line isx(p)3>0.
Now we use the fact that the integrand is independemt of
where andps;. The integral over; andps is
_ _n2
¢(p)=(2mmkgT)~¥2e~P7/(2miaD) (A2) f drsf dps 8(roPp3—T3P2) S(r1Pg—rsps). (A12)
is the Maxwell velocity distribution. Therefore Setting
_ X r —P2| (P
<A>=pf dpm(m)fdpzso(pz)fdre AV A(r,p). ( ):( ’ 2)( 3) (A13)
(A3) y —r P1/\r3

and noting that the determinant is nonzero we obtain for this
Our first task is to integrate out the motion of the center ofintegration

mass.
Let ps be the momentum of the center of mass @nlde 1 . (A14)

the relative momentum. Then (rXp)s

1 Therefore we obtain
p1=p+ 5Ps: (Ad)
f f dr dp=47rf f d?r d?p(rxp), (A15)
1
p,=—p+ 7Ps- (A5)  where integration is over the regiox p>0.
Now we introduce polar coordinates

The Jacobian for this transformation is equal to 1 and X=r cosfd, y=rsing. (A16)
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The conjugate momenta are (r,pr,Pe) < (E,11) (A26)

Pr=pur,  poe=nr?e. (A17)  in some more detail. In particular we must know under what
conditions the mapping is bijective. Sinpg=1, it is suffi-

Because every point transformation is canonical and th@jent tg study the one-dimensional canonical transformation
phase volume is invariant under canonical transformations,

we obtain (r,p;,)<(E,t) (A27)

ffd18r d3p=47'rJ' j f f p,drdodp, dp,. induced by the effective potential

(A18) E
Veri=V(r)+ 5

We perform a second canonical transformation from the co- (A28)

ordinatesr,# and momentg, , p, to new coordinates, 6,

and new momentd, |. To this end, consider Hamilton’s  Every possible motion is either unbounded or bounded.
characteristic functioW(r, ). It satisfies the Hamilton- Unbounded trajectories are scattering states, beginning and
Jacobi equation ending at infinity with a single turning point in between. If
the motion is bounded it is, apart from certain singular cases,
periodic inr. As (r,p,) traverses such a trajectory, the image
in the (E,t) plane is an interval parallel to the axis. For
unbounded motion the time extends froaw to +oo. For

6 is a cyclic coordinate and the Hamilton-Jacobi equation igperiodic motionr and p, take the same values after one

r2’

1 2

JW
2u |\ ar

2 1 /oW
aor rz 60

+V(r)=E.  (A19)

separable. We insert the ansatz periodT. The time interval then extends over this period.
A fixed energyE may admit a finite number of trajecto-
W=W,(r,I,E)+1 6 (A20)  ries, at most one of these is unbounded. A®() traverses
, these trajectories, each trajectory maps onto the correspond-

and obtain ing time interval. In such a case, the integral over time be-

1T law2 |2 comes the sum over all periods admitted

;
o, ( o +r2 +V(r)=E. (A21)

T
> J dt. (A29)
T Jo
W depends on the old coordinate® and the new momenta I

E,l. As a canonical transformatiokly transforms the Hamil-
tonian into the constar and generates new coordinates via APPENDIX B

We want to estimate the integral

_W A22
Ql_f’ (A22) B 3
f e XX “dx (B1)
AW 0
for large w. Settingx= w"y with
Hamilton’s canonical equations wittH=E produce the 1
equations of motiorQ;=1,Q,=0. ThereforeQ, is equal to V=TT (B2)

the time with respect to some reference titgeandQ, is
constant. According to EA20) Q, is equal to a reference The integral becomes
angle 6.
Using again the invariance of the phase volume with re- - -
spect to canonical transformations we obtain w”fo e @'ty dy. (B3)

ffdrdp=47rf dEf |d|f dﬁof dt. (A24)  Now we can apply Laplace’s method. The minimum of
f(y)=y+y “is located at
The integrand is invariant with respect to rotations in the

plane of the motion. Therefore the integral becomes Ym= D (B4)
and the value at the minimum is
ffdr dp=477f dEf 2’7T|d|f dt. (A25)
fn=Ym+Ymym" "= (1+a Hyn. (B5)

This completes the formal development.
We must now study the mapping Therefore we obtain for large
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o . 2 , where
J’ e X—ox T gy~ fT(l)V/237w fm_ (BG)
0

m
Inserting y=(fn" o. (B9)
L (B7) imi :
r (ar1)? " In a similar manner we find
we obtain
® —a \/m v
” N J X7e XX T dx~ (1— )7yl +rlg=y"
f efxfwx_“ dx~ Ta yvlz efy" (BS) 0 a+l
0 a+1l ' (B10
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